糖原合成酶激酶3β調(diào)節(jié)足細(xì)胞骨架在足細(xì)胞損傷機(jī)制及治療中的作用
本文選題:足細(xì)胞 + 細(xì)胞骨架。 參考:《南京大學(xué)》2014年博士論文
【摘要】:腎小球疾病是中國(guó)終末期腎病最主要的原發(fā)病。足細(xì)胞作為腎小球?yàn)V過(guò)屏障的最外層,對(duì)維持正常腎小球?yàn)V過(guò)起著極其重要的作用。足細(xì)胞損傷被認(rèn)為是蛋白尿產(chǎn)生的主要原因之一。對(duì)于足細(xì)胞損傷機(jī)制的研究及相對(duì)應(yīng)治療靶點(diǎn)的探索因此極為重要。足細(xì)胞損傷以足突融合、足細(xì)胞脫落為主要表現(xiàn)。足突的融合與細(xì)胞骨架中的微絲結(jié)構(gòu)改變密切相關(guān),而足細(xì)胞脫落后細(xì)胞的代償取決于由微管蛋白聚合與解聚調(diào)控的初級(jí)突起的延伸。本研究以阿霉素在體內(nèi)和體外誘導(dǎo)足細(xì)胞損傷,分別探討微絲及微管在細(xì)胞損傷、修復(fù)中的作用;證明了糖原合成酶激酶3β (Glycogen synthase kinase 3β, GSK3β)在足細(xì)胞中一方面可通過(guò)調(diào)節(jié)黏著斑(Focal adhesion, FA)組成蛋白樁蛋白(paxillin)的活性,改變黏著斑穩(wěn)定性,從而影響微絲結(jié)構(gòu),另一方面可通過(guò)調(diào)節(jié)微管相關(guān)蛋白(microtubule associate protein, MAP)的活性,影響微管的聚合與解聚以及足細(xì)胞初級(jí)突起的延伸,控制著足細(xì)胞損傷后的代償效率。樁蛋白的磷酸化可增加黏著斑的轉(zhuǎn)變速率,從而增加細(xì)胞活動(dòng)力,促進(jìn)微絲解聚。當(dāng)體外培養(yǎng)的足細(xì)胞受到損傷時(shí),出現(xiàn)微絲的解聚,黏著斑數(shù)量增多,面積減小及細(xì)胞活動(dòng)力的增加,同時(shí)伴隨應(yīng)力纖維(stress fiber)的解聚,細(xì)胞形態(tài)的萎縮。這些表現(xiàn)伴隨著樁蛋白磷酸化的增加以及GSK3P的過(guò)度活化。氯化鋰(Lithium chloride,LiC1),一種高度認(rèn)可的情緒穩(wěn)定劑在阿霉素?fù)p傷前預(yù)處理可預(yù)防GSK3β的過(guò)度活化,減少樁蛋白磷酸化,降低黏著斑的轉(zhuǎn)變速率,阻止了足細(xì)胞活動(dòng)力的過(guò)度升高。另外,通過(guò)轉(zhuǎn)染質(zhì)粒使足細(xì)胞表達(dá)GSK3β不同突變種可以導(dǎo)致不同的細(xì)胞表現(xiàn),且與鋰劑或阿霉素處理效果相似。細(xì)胞表達(dá)酶失活的GSK3β與鋰劑類似,而表達(dá)持續(xù)激活S9A位點(diǎn)的GSK3p則與阿霉素處理類似,且表達(dá)酶失活的GSK3β的細(xì)胞可以對(duì)抗阿霉素的損傷。這表明,鋰劑對(duì)足細(xì)胞的保護(hù)作用在較大程度上是通過(guò)對(duì)GSK3β活性的抑制。同時(shí),樁蛋白也被證明是GSK3β的下游蛋白。而當(dāng)體內(nèi)足細(xì)胞受阿霉素?fù)p傷后也出現(xiàn)GSK3β活性增高,樁蛋白磷酸化增加,足細(xì)胞中微絲減少,足突融合;提前給予小鼠氯化鋰可降低GSK3β活性,同時(shí)使樁蛋白的磷酸化降低,足突中微絲的解聚減少,足突融合及腎小球硬化降低。本研究證明鋰劑抑制了阿霉素導(dǎo)致的足細(xì)胞中GSK3β過(guò)度活化,樁蛋白過(guò)磷酸化,維持微絲結(jié)構(gòu),減輕足突融合。綜上,GSK3β調(diào)節(jié)的黏著斑的動(dòng)力可能是足細(xì)胞損傷的一個(gè)可能機(jī)理,而小劑量氯化鋰可能為預(yù)防足細(xì)胞損傷提供了一個(gè)新思路。當(dāng)足細(xì)胞損傷脫落后,殘余的足細(xì)胞可能與神經(jīng)細(xì)胞軸突損傷后延長(zhǎng)機(jī)制類似,通過(guò)延伸初級(jí)突起發(fā)生代償,企圖掩蓋裸露的基底膜。微管作為足細(xì)胞初級(jí)突起中的主要骨架結(jié)構(gòu),在足細(xì)胞形態(tài)維持和初級(jí)突起生成、延長(zhǎng)和分支中起重要作用。本研究探討了兩種重要的微管相關(guān)蛋白(microtubule associate protein, MAP) tau蛋白和坍塌反應(yīng)調(diào)節(jié)蛋白(collapsin response mediator protein, CRMP)2作為GSK3β下游蛋白,在足細(xì)胞中的作用。由阿霉素或表達(dá)持續(xù)激活S9A位點(diǎn)引起的GSK3β過(guò)度活化均導(dǎo)致tau蛋白和CRMP2的過(guò)磷酸化、微管的解聚及細(xì)胞形態(tài)的萎縮、細(xì)胞突起的縮短。鋰劑或表達(dá)酶失活的GSK3β在足細(xì)胞中可逆轉(zhuǎn)以上改變。在阿霉素模型中,小劑量單次氯化鋰治療在無(wú)明顯改善足細(xì)胞丟失的情況下減少了蛋白尿和腎小球硬化。進(jìn)一步的機(jī)制研究表明,鋰劑降低了GSK3β活性,減少了tau和CRMP2的磷酸化,增加了微管的聚集和穩(wěn)定性,促進(jìn)了足細(xì)胞初級(jí)突起的延伸,從而改善足細(xì)胞的代償。因此,針對(duì)GSK3β調(diào)節(jié)的足細(xì)胞微管延伸和足細(xì)胞丟失后的代償可能為足細(xì)胞損傷帶來(lái)新的治療方向。綜上所述,本研究闡述了GSK3β在足細(xì)胞損傷中促進(jìn)足細(xì)胞黏著斑轉(zhuǎn)變?cè)隹、微絲及微管解聚,與足突融合相關(guān),可能為足細(xì)胞損傷機(jī)制;氯化鋰抑制GSK3β活性可通過(guò)防止微絲解聚、足突融合從而減輕足細(xì)胞損傷,對(duì)預(yù)防腎移植復(fù)發(fā)有潛在意義;氯化鋰后處理可通過(guò)促進(jìn)殘余足細(xì)胞初級(jí)突起延伸,增加代償而促進(jìn)修復(fù),為足細(xì)胞損傷疾病的治療提供了可能的新方向。
[Abstract]:Glomerular disease is the primary primary disease of end-stage renal disease in China. Podocyte, the outermost layer of the glomerular filtration barrier, plays an important role in maintaining normal glomerular filtration. Podocyte injury is considered as one of the main causes of proteinuria. Research on the mechanism of foot cell damage and the target of relative treatment The fusion of podocytes is the main manifestation of podocyte fusion. Foot process fusion is closely related to the changes of microfilament structure in the cytoskeleton, and the compensation of the cells after the peeling of the podocytes depends on the extension of the primary protuberance regulated by microtubulin polymerization and depolymerization. The effect of microfilament and microtubule on cell damage and repair is discussed respectively. It is proved that the glycogen synthetase kinase 3 beta (Glycogen synthase kinase 3 beta, GSK3 beta) can make up the activity of protein pile protein (paxillin) by regulating the adhesion plaque (Focal adhesion, FA) in the podocyte, and change the stability of the sticky spot, so as to change the stability of the plaque. The structure of the microfilament, on the other hand, can be controlled by the regulation of the activity of microtubule associate protein (MAP), the polymerization and depolymerization of microtubules, and the extension of the primary protuberance of the podocyte. The phosphorylation of PCR can increase the rate of change of the plaque and increase the activity of the cell. To promote the depolymerization of microfilament. When the cultured podocytes are damaged, the depolymerization of microfilament, the increase of the number of plaque, the decrease of the area and the increase of cell activity, and the depolymerization of the stress fiber (stress fiber) and the atrophy of the cell morphology are accompanied by the increase of phosphorylation of piled protein and the overactivation of GSK3P. Lithium (Lithium chloride, LiC1), a highly recognized emotional stabilizer preconditioning before adriamycin damage can prevent the overactivation of GSK3 beta, reduce the phosphorylation of PCR, reduce the rate of change in the plaque, and prevent the excessive increase in the activity of the podtlet. In addition, the expression of GSK3 beta variant can lead to the expression of GSK3 beta mutants by the transfer plasmids. The cell expression of different cells is similar to that of lithium or adriamycin. The GSK3 beta that expresses the inactivation of the enzyme is similar to that of the lithium agent, while the GSK3p expressing the S9A site is similar to the adriamycin treatment, and the cells expressing the inactivated GSK3 beta can antagonism the damage of adriamycin. This indicates that the protective effect of the lithium agent on the foot cells is in Jiao Dacheng. On the degree of inhibition of GSK3 beta activity, PCR is also proved to be a downstream protein of GSK3 beta, and when adriamycin is damaged in the body, the activity of GSK3 beta is increased, the phosphorylation of Paxin increases, the microfilament in the podocytes decreases, and the foot process is fused. The decrease of phosphorylation, depolymerization of microfilament in the poddal process, the fusion of poddate and the decrease of glomerulosclerosis. This study demonstrated that lithium inhibits the overactivation of GSK3 beta in adriamycin induced podocytes, Posin perphosphorylation, microfilament structure, and amalgamation of poddate. In conclusion, the power of GSK3 beta regulated plaque may be one of the potential of foot cell injury. A small dose of lithium chloride may provide a new idea for the prevention of foot cell injury. When the foot cell injury falls off, the remnant Poddar may be similar to the extension mechanism after the nerve cell axon damage. It can cover the bare basement membrane by extending the primary protuberance to cover the bare basement membrane. Microtubule is the main main protuberance in the Poda. In this study, two important microtubule related proteins (microtubule associate protein, MAP) tau protein and collapse response regulation protein (collapsin response mediator protein, CRMP) 2 were considered as GSK3 beta downstream proteins in the foot thin. The action in the cell. Excessive activation of GSK3 beta caused by Adriamycin or the expression of continuous activation of the S9A locus all lead to phosphorylation of tau protein and CRMP2, the depolymerization of microtubules and the atrophy of cell morphology, and the shortened process of cell protuberance. The lithium or GSK3 beta inactivated GSK3 beta can be reversed in the Poda. In the adriamycin model, small dose single chlorine Lithium-ion therapy reduces proteinuria and glomerulosclerosis without significantly improving podocyte loss. Further mechanism studies show that lithium reduces the GSK3 beta activity, reduces the phosphorylation of tau and CRMP2, increases the aggregation and stability of microtubules, promotes the extension of the primary protrusions of the podocytes, and thus improves the compensatory effect of the podocyte. In this case, GSK3 beta regulated foot cell microtubule extension and foot cell loss may bring new therapeutic direction for podocyte injury. To sum up, this study explained that GSK3 beta in podocyte injury promotes the rapid growth of podocyte adhesion, microfilament and microtubule disaggregation, and is associated with foot process fusion, which may be the mechanism of podocyte injury. Lithium chloride inhibits GSK3 beta activity by preventing the depolymerization of microfilament, foot process fusion and alleviating foot cell damage, which is of potential significance for preventing the recurrence of renal transplantation. Lithium chloride treatment can provide a possible new direction for the treatment of foot cell injury by promoting the extension of the primary protuberance of the residual podocyte, increasing compensation and promoting the repair.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:R692
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳洪宇;吳文斌;王永鈞;;腎臟病足細(xì)胞損傷及其防治研究進(jìn)展[J];醫(yī)學(xué)研究雜志;2007年11期
2 王惠;何方方;張春;;足細(xì)胞損傷機(jī)制研究進(jìn)展[J];中國(guó)中西醫(yī)結(jié)合腎病雜志;2008年11期
3 洪亦眉;陳朝紅;;足細(xì)胞損傷的病因和發(fā)病機(jī)制[J];腎臟病與透析腎移植雜志;2009年01期
4 暴小方;黃國(guó)東;;中醫(yī)藥對(duì)腎臟足細(xì)胞損傷干預(yù)作用的研究進(jìn)展[J];內(nèi)科;2013年03期
5 王慶苗;魏錦慧;;中藥防治足細(xì)胞損傷研究進(jìn)展[J];中醫(yī)研究;2014年05期
6 李芙蓉;鄭春霞;;可溶性尿激酶型纖溶酶原激活物受體與局灶節(jié)段性腎小球硬化[J];腎臟病與透析腎移植雜志;2014年01期
7 李振勇;倪兆慧;;足細(xì)胞損傷的干預(yù)研究進(jìn)展[J];國(guó)際泌尿系統(tǒng)雜志;2006年04期
8 黃國(guó)東;許健;喬莉;;腎足細(xì)胞損傷中西醫(yī)治療的國(guó)內(nèi)研究進(jìn)展[J];時(shí)珍國(guó)醫(yī)國(guó)藥;2009年12期
9 鄔民香;羅群;;糖尿病腎病足細(xì)胞損傷機(jī)制研究進(jìn)展[J];現(xiàn)代實(shí)用醫(yī)學(xué);2012年05期
10 肖厚勤,張建鄂,丁國(guó)華;足細(xì)胞損傷與腎小球硬化[J];國(guó)外醫(yī)學(xué).泌尿系統(tǒng)分冊(cè);2004年04期
相關(guān)會(huì)議論文 前8條
1 黃國(guó)東;許健;;腎足細(xì)胞損傷治療的國(guó)內(nèi)研究進(jìn)展[A];第10屆全國(guó)中西醫(yī)結(jié)合腎臟病學(xué)術(shù)會(huì)議論文匯編[C];2009年
2 郭兆安;;中藥及其有效成分防治足細(xì)胞損傷研究進(jìn)展[A];第十一屆全國(guó)中西醫(yī)結(jié)合腎臟病學(xué)術(shù)會(huì)議論文匯編[C];2010年
3 劉志紅;;足細(xì)胞損傷的研究[A];2012年浙江省腎臟病學(xué)術(shù)年會(huì)論文集[C];2012年
4 馮泉城;苗靜;姜麗娜;李雪娟;張曉燕;丁潔;;補(bǔ)體C3在足細(xì)胞損傷中的作用[A];中華醫(yī)學(xué)會(huì)第十七次全國(guó)兒科學(xué)術(shù)大會(huì)論文匯編(上冊(cè))[C];2012年
5 劉雙信;史偉;梁馨苓;李珩;葉智明;王文健;何朝生;梁永正;駱寧;劉艷輝;胡湘明;章斌;彭炎強(qiáng);馬健超;;RANK可能是足細(xì)胞損傷標(biāo)志[A];中華醫(yī)學(xué)會(huì)腎臟病學(xué)分會(huì)2006年學(xué)術(shù)年會(huì)論文集[C];2006年
6 范青鋒;張涵;劉淑芳;余自華;管娜;邢燕;丁潔;;突變podocin通過(guò)TRPC6介導(dǎo)的鈣離子內(nèi)流誘導(dǎo)足細(xì)胞損傷[A];中華醫(yī)學(xué)會(huì)第五次全國(guó)兒科中青年學(xué)術(shù)交流大會(huì)論文匯編(上冊(cè))[C];2008年
7 饒佳;徐虹;楊海春;郝偉明;;嘌呤霉素誘導(dǎo)足細(xì)胞損傷中ANGPTL3對(duì)硫酸肝素蛋白多糖表達(dá)的影響[A];中華醫(yī)學(xué)會(huì)第十四次全國(guó)兒科學(xué)術(shù)會(huì)議論文匯編[C];2006年
8 王文琰;張愛(ài)華;袁楊剛;朱春華;黃松明;;自噬早期激活可抑制醛固酮誘導(dǎo)的足細(xì)胞損傷[A];2012年江浙滬兒科學(xué)術(shù)年會(huì)暨浙江省醫(yī)學(xué)會(huì)兒科學(xué)分會(huì)學(xué)術(shù)年會(huì)、兒內(nèi)科疾病診治新進(jìn)展國(guó)家級(jí)學(xué)習(xí)班論文匯編[C];2012年
相關(guān)博士學(xué)位論文 前8條
1 徐維瑋;糖原合成酶激酶3β調(diào)節(jié)足細(xì)胞骨架在足細(xì)胞損傷機(jī)制及治療中的作用[D];南京大學(xué);2014年
2 湯曦;局灶節(jié)段性腎小球硬化足細(xì)胞損傷標(biāo)志物及凝血功能異常的研究[D];南京大學(xué);2011年
3 朱春華;線粒體功能障礙在足細(xì)胞損傷中的作用及干預(yù)研究[D];南京醫(yī)科大學(xué);2011年
4 黃軼嶸;腎臟缺血再灌注中足細(xì)胞損傷機(jī)制的研究[D];山西醫(yī)科大學(xué);2008年
5 陳珊;TRPC6介導(dǎo)的鈣離子內(nèi)流在白蛋白過(guò)負(fù)荷所致足細(xì)胞損傷中的作用[D];華中科技大學(xué);2011年
6 高丹;氯沙坦改善5/6腎切除大鼠生存率及修復(fù)足細(xì)胞損傷的實(shí)驗(yàn)研究[D];鄭州大學(xué);2012年
7 袁楊剛;線粒體功能障礙在腎小球足細(xì)胞早期損傷中作用的研究[D];南京醫(yī)科大學(xué);2012年
8 邢玲玲;P13K/Akt通路在糖尿病腎病足細(xì)胞損傷中的作用[D];河北醫(yī)科大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 胡夢(mèng)思;粘著斑激酶在氧化低密度脂蛋白誘導(dǎo)的體外足細(xì)胞損傷中的作用研究[D];山東大學(xué);2013年
2 部璇;肝細(xì)胞生長(zhǎng)因子保護(hù)足細(xì)胞損傷的實(shí)驗(yàn)研究[D];南京醫(yī)科大學(xué);2010年
3 柳林芬;骨髓間充質(zhì)干細(xì)胞對(duì)脂多糖誘導(dǎo)的足細(xì)胞損傷的影響及可能機(jī)制[D];福建醫(yī)科大學(xué);2014年
4 姚琴;TRPC6在足細(xì)胞的表達(dá)及其與足細(xì)胞損傷修復(fù)相關(guān)性研究[D];大連醫(yī)科大學(xué);2008年
5 王惠;瞬時(shí)受體電位陽(yáng)離子通道蛋白6在高糖所致足細(xì)胞損傷中的作用及機(jī)制[D];華中科技大學(xué);2011年
6 胡鶴一;骨髓間充質(zhì)干細(xì)胞對(duì)大鼠足細(xì)胞損傷的保護(hù)作用的研究[D];福建醫(yī)科大學(xué);2012年
7 任曉旭;Fyn在高糖誘導(dǎo)的足細(xì)胞損傷中的作用研究[D];山東大學(xué);2014年
8 葉佳男;ACTH_(4-10)對(duì)阿霉素誘導(dǎo)足細(xì)胞損傷的保護(hù)作用[D];蘇州大學(xué);2014年
9 李夢(mèng);Angptl4在體內(nèi)和體外足細(xì)胞損傷中的作用研究[D];浙江大學(xué);2015年
10 龍香菊;糖尿病腎病足細(xì)胞損傷機(jī)制研究[D];天津醫(yī)科大學(xué);2007年
,本文編號(hào):1812106
本文鏈接:http://sikaile.net/yixuelunwen/mjlw/1812106.html