現(xiàn)行結(jié)核菌檢測(cè)技術(shù)應(yīng)用于泌尿系統(tǒng)結(jié)核診斷的研究進(jìn)展
本文關(guān)鍵詞:現(xiàn)行結(jié)核菌檢測(cè)技術(shù)應(yīng)用于泌尿系統(tǒng)結(jié)核診斷的研究進(jìn)展,由筆耕文化傳播整理發(fā)布。
綜 述
現(xiàn)行結(jié)核菌檢測(cè)技術(shù)應(yīng)用于泌尿系統(tǒng)結(jié)核診斷的研究進(jìn)展 何莎,周偉,張五星
100091 北京,解放軍第309醫(yī)院全軍器官移植研究所腎臟病科 周偉,Email: snowpromise2012@163.com
摘要:泌尿系統(tǒng)結(jié)核居于肺外結(jié)核第三位,其中最主要的是腎結(jié)核。腎結(jié)核是由結(jié)核分枝桿菌引起的慢性、進(jìn)行性、破壞性病變,常因其結(jié)核癥狀不典型致使臨床診療上易漏診誤診,從而延誤治療時(shí)機(jī),給患者泌尿系統(tǒng)帶來(lái)很大損傷。目前泌尿系統(tǒng)結(jié)核的確診主要依賴于臨床表現(xiàn)結(jié)合實(shí)驗(yàn)室檢查、影像學(xué)檢查等。但是橫跨在現(xiàn)有技術(shù)與泌尿系統(tǒng)結(jié)核臨床診斷需要之間的鴻溝依舊為其早期診斷、病情評(píng)估和預(yù)后監(jiān)測(cè)帶來(lái)了不可避免的影響,這也阻礙了泌尿系統(tǒng)結(jié)核診斷方式更新的探索與發(fā)展。伴隨著納米技術(shù)和微流體技術(shù)的飛速發(fā)展,很多檢測(cè)結(jié)核分枝桿菌的生物傳感器應(yīng)運(yùn)而生。近年來(lái)納米/微流體技術(shù)已經(jīng)被廣泛應(yīng)用于發(fā)展現(xiàn)場(chǎng)檢測(cè)多種疾病的診斷和監(jiān)測(cè)技術(shù)方面,這預(yù)示著在結(jié)核病診斷方面應(yīng)用納米/微流體技術(shù)也是不可避免的趨勢(shì),更為診斷泌尿系統(tǒng)結(jié)核尋找更為可靠準(zhǔn)確的依據(jù)和方法提供了新的契機(jī)。以下對(duì)泌尿系統(tǒng)結(jié)核的臨床表現(xiàn)、診斷方法、橫跨在現(xiàn)有技術(shù)與泌尿系統(tǒng)結(jié)核臨床診斷之間的鴻溝、結(jié)核病診斷的納米/微流體技術(shù)以及納米/微流體技術(shù)能否為泌尿系統(tǒng)結(jié)核診斷與監(jiān)測(cè)提供未來(lái)前景等方面進(jìn)行綜述。
關(guān)鍵詞:結(jié)核,泌尿生殖系統(tǒng); 分枝桿菌,,結(jié)核; 檢測(cè)方法; 納米/微流體技術(shù)
Research progress on the application of the current tuberculosis detection technology in the diagnosis of urinary tuberculosis He Sha, Zhou Wei, Zhang WuxingDepartment of Nephropathy, Organ Transplant Research Institute, the 309th Hospital of PLA, Beijing 100091, China Zhou Wei, Email: snowpromise2012@163.com
Abstract:Tuberculosis of urinary system is third of the extra pulmonary tuberculosis, because of its atypical clinical symptoms of tuberculosis caused easily misdiagnosed, thus delay treatment timing, for patients with urinary system bring great damage. At present, the diagnosis of urinary system tuberculosis mainly depends on the clinical manifestations with laboratory examination and imaging examination. But across the gap of existing technology and clinical diagnosis of tuberculosis of urinary system between the needs still brings the inevitable effect on early diagnosis, condition assessment and prognosis. It also impedes the update tuberculosis diagnosis way of urinary system. With the rapid development of the nanotechnology/microfluidics, biosensors for the detection of Mycobacterium tuberculosis emerge as the times. In recent years, nanotechnology/microfluidics has already been widely applied to the detection of various diseases at point of care. This indicates the inevitable trend of the application of nanotechnology/microfluidics in the diagnosis of tuberculosis, also provides a new opportunity for looking for more reliable and accurate basis and methods about tuberculosis of urinary system diagnosis. Hence introduced the clinical manifestations of tuberculosis of urinary system, the diagnosis of urinary system tuberculosis, the gap between existing technology, clinical diagnosis of tuberculosis of urinary system, and the diagnosis of tuberculosis in nanotechnology/microfluidics and they can provide the future prospects for the diagnosis of urinary tuberculosis detection.
Keywords:Tuberculosis, urogenital; Mycobacterium tuberculosis; Detection method; Nanotechnology/microfluidics
字體
閱讀
參考文獻(xiàn)
[1] WHO. Global tuberculosis control 2011b. http: //www. who. int/tb/publications/global_report/en/2011[S].[accessed on January 26th, 2012].
[2] 黃建生, 沈梅, 孫亞玲. 上海市肺外結(jié)核的流行病學(xué)分析[J]. 中華結(jié)核和呼吸雜志, 2000, 23(10): 606-608.
[3] 許賓, 孫加源, 黃燕. 綜合醫(yī)院肺外結(jié)核101例臨床分析[J]. 中國(guó)防癆雜志, 2004, 26(3): 151-154.
[4] Noertjojo K1, Tam CM, Chan SL, et al. Extra-pulmonary and pulmonary tuberculosis in Hong Kong[J]. Int J Tuberc Lung Dis, 2002, 6(10): 879-886.
[5] Wang S, Inci F, De Libero G, et al. Point-of-care assays for tuberculosis: Role of nanotechnology/microfluidics[J]. Biotechnology Advances, 2013, 31(4): 438-449.
[6] He F, Zhang R. Rapid diagnosis of M. tuberculosis using a piezoelectric immunosensor[J]. Anal Sci, 2002, 18: 397-401.
[7] Buijtels PC, Willemse-Erix HF, Petit PL, et al. Rapid identification of mycobacteria by Raman spectroscopy[J]. J Clin Microbiol, 2008, 46: 961-965.
[8] Chun AL. Nanoparticles offer hope for TB detection[J]. Nat Nanotechnol, 2009, 4(11): 698-699.
[9] Diaz-Gonzalez M, Gonzalez-Garcia MB, Costa-Garcia A. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes[J]. Biosens Bioelectron, 2005, 20: 2035-2043.
[10] Thanyani ST, Roberts V, Siko DGR, et al. A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients[J]. J Immunol Methods, 2008, 332: 61-72.
[11] H??k F, Kasemo B, Nylander T, et al. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study[J]. Anal Chem, 2001, 73: 5796-804.
[12] Ren J, He F, Yi S, et al. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis[J]. Biosens Bioelectron, 2008, 24: 403-409.
[13] Buijtels PC, Willemse-Erix HF, Petit PL, et al. Rapid identification of mycobacteria by Raman spectroscopy[J]. J Clin Microbiol, 2008, 46: 961-965.
[14] Costa P, Amaro A, Botelho A, et al. Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex[J]. Clin Microbiol Infect, 2010, 16: 1464-1469.
[15] Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, et al. Specific detection of Mycobacterium sp genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor[J]. Anal Biochem, 2011, 417: 73-79.
[16] Breslauer DN, Maamari RN, Switz NA, et al. Mobile phone based clinical microscopy for global health applications[J]. PLoS One, 2009, 22, 4(7):e6320.
[17] Alyassin MA, Moon S, Keles HO, et al. Rapid automated cell quantification on HIV microfluidic devices[J]. Lab Chip, 2009, 9: 3364-3369.
[18] Chin CD, Laksanasopin T, Cheung YK, et al. Microfluidics-based diagnostics of infectious diseases in the developing world[J]. Nat Med, 2011, 17: 1015-1019.
[19] Christodoulides N, Mohanty S, Miller CS, et al. Application of microchip assay system for the measurement of C-reactive protein in human saliva[J]. Lab Chip, 2005, 5: 261-269.
[20] Dimov IK, Basabe-Desmonts L, Garcia-Cordero JL, et al. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS)[J]. Lab Chip, 2011, 11: 845-850.
[21] Gurkan UA, Moon S, Geckil H, et al. Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing[J]. Biotechnol J, 2011, 6: 138-149.
[22] Kim YG, Moon S, Kuritzkes DR, et al. Quantum dot-based HIV capture and imaging in a microfluidic channel[J]. Biosens Bioelectron, 2009, 25: 253-258.
[23] Moon S, Keles HO, Ozcan A, et al. Integrating microfluidics and lensless imaging for point-of-care testing[J]. Biosens Bioelectron, 2009, 24: 3208-3214.
[24] Moon S, Gurkan UA, Blander J, et al. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients[J]. PLoS One, 2011, 6: e21409.
[25] Wang S, Xu F, Demirci U. Advances in developing HIV-1 viral load assays for resource-limited settings[J]. Biotechnol Adv, 2010, 28: 770-781.
[26] Wang S, Esfahani M, Gurkan UA, et al. Efficient on-chip isolation of HIV subtypes[J]. Lab Chip, 2012, 12: 1508-1515.
[27] Wang S, Zhao X, Khimji I, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care[J]. Lab Chip, 2011, 11: 341-348.
[28] Dheda K, van Zyl Smit R, Badri M, et al. T-cell interferon-gamma release assays for the rapid immunodiagnosis of tuberculosis: clinical utility in high-burden vs. low-burden settings[J]. Curr Opin Pulm Med, 2009, 15: 188-200.
(編輯:戚紅丹 收稿日期:2014-09-28)
本文關(guān)鍵詞:現(xiàn)行結(jié)核菌檢測(cè)技術(shù)應(yīng)用于泌尿系統(tǒng)結(jié)核診斷的研究進(jìn)展,由筆耕文化傳播整理發(fā)布。
本文編號(hào):163665
本文鏈接:http://sikaile.net/yixuelunwen/mjlw/163665.html