三維重建及快速成型技術(shù)在室間隔缺損手術(shù)中的應(yīng)用
本文選題:三維重建 + 快速成型技術(shù); 參考:《新鄉(xiāng)醫(yī)學(xué)院》2016年碩士論文
【摘要】:背景3D打印技術(shù)出現(xiàn)于20世紀(jì)80年代中期,它是一種以數(shù)字模型文件為基礎(chǔ),運(yùn)用粉末狀金屬或塑料等可粘合材料,通過逐層打印的方法來構(gòu)造物體的技術(shù)。3D打印技術(shù)與醫(yī)學(xué)相結(jié)合,由臨床需求為導(dǎo)向從而衍生出來的一系列醫(yī)學(xué)模型是近年來醫(yī)學(xué)領(lǐng)域的新突破。目的基于256CT數(shù)據(jù)行室間隔缺損患兒病變部位三維重建并制作患兒的室間隔缺損的實(shí)體模型,探討其在小兒室間隔缺損修補(bǔ)手術(shù)中的應(yīng)用價(jià)值,為臨床室間隔缺損修補(bǔ)術(shù)提供嶄新的診療視角。方法選取2014年9月至2015年7月鄭州市心血管病醫(yī)院收治的經(jīng)彩色超聲確認(rèn)的干下型室間隔缺損患兒30例,男17例,女13例,年齡2歲5個(gè)月~3歲,平均年齡2歲8個(gè)月,體重9.6±2.6kg。30例室間隔缺損患兒均行彩色超聲與增強(qiáng)256CT心臟影像學(xué)檢查,設(shè)備由鄭州市心血管病醫(yī)院提供,設(shè)備型號(hào)為荷蘭Philips Brilliance iCT,層厚0.45mm,獲得256CT連續(xù)斷層平掃醫(yī)學(xué)數(shù)字成像和通信(Digital Imaging and Communications in Medicine,DICOM)圖像數(shù)據(jù),然后將得到的DICOM圖像數(shù)據(jù)導(dǎo)入到比利時(shí)Materialise公司醫(yī)用Mimics19.0軟件,優(yōu)化圖像,以減少256CT因素及呼吸運(yùn)動(dòng)、心臟跳動(dòng)產(chǎn)生的陰影、斑點(diǎn)。根據(jù)CT成像原理確定心臟造影劑、心肌、脂肪的閾值范圍,并標(biāo)示。利用醫(yī)用Mimics軟件中的再利用區(qū)域生長(zhǎng)及動(dòng)態(tài)區(qū)域生長(zhǎng)算法對(duì)目標(biāo)區(qū)域進(jìn)行分割。而后利用Mimics軟件編輯蒙面,利用編輯命令功能進(jìn)行精細(xì)分割,分離內(nèi)部造影劑,保留正常組織結(jié)構(gòu)及病變部位圖像。得到30例患兒的三維重建數(shù)據(jù),依據(jù)三維重建數(shù)據(jù)利用美國(guó)3DP Unlimited X1000工業(yè)打印機(jī)打印出3D模型。結(jié)果30例行三維重建及快速成型技術(shù)指導(dǎo)室間隔缺損修補(bǔ)手術(shù)患兒均取得理想的CT原始數(shù)據(jù),而后根據(jù)醫(yī)用Mimics軟件處理所得的數(shù)據(jù)進(jìn)行3D打印。術(shù)中所見與術(shù)前三維重建模型的病灶結(jié)構(gòu)變化及室間隔缺損大小一致。術(shù)前三維重建模型測(cè)量室間隔缺損大小平均直徑為7.10±0.2mm,術(shù)中實(shí)測(cè)室間隔缺損平均直徑為7.20±0.2mm,兩者比較差異無統(tǒng)計(jì)學(xué)意義(t=0.82,P=0.43)。30例患兒均按手術(shù)前手術(shù)規(guī)劃完成手術(shù),手術(shù)過程順利,室間隔缺損補(bǔ)片均縫合良好,補(bǔ)片形態(tài)、大小滿意。30例患兒均未出現(xiàn)房室傳導(dǎo)阻滯及三尖瓣功能異常等并發(fā)癥。左右流出道形態(tài)正常,未出現(xiàn)流出道梗阻改變及室間隔修補(bǔ)術(shù)后殘余漏。結(jié)論1.通過三維重建及快速成型技術(shù)可以獲得病理器官的三維模型,包含心臟腔室內(nèi)部結(jié)構(gòu)、心臟房室壁及心臟血管解剖結(jié)構(gòu)關(guān)系。2.根據(jù)三維模型,可以完成病變部位任意角度觀察及測(cè)量、便捷術(shù)前溝通、規(guī)劃手術(shù)路徑、設(shè)計(jì)手術(shù)方案、指導(dǎo)室間隔缺損手術(shù)、對(duì)比手術(shù)效果等。3.三維重建及快速成型技術(shù)還可以對(duì)法洛氏四聯(lián)癥、右心室雙出口、主動(dòng)脈夾層等復(fù)雜心血管疾病提供診斷全新視角,輔助手術(shù),降低手術(shù)時(shí)間、提高手術(shù)成功率。
[Abstract]:Background 3D printing technology was developed in the mid-1980s. It is based on digital model files and uses adhesible materials such as powder metal or plastics. In recent years, a series of medical models derived from the combination of 3D printing technology and medical science, which are based on the method of layer by layer printing, are a new breakthrough in the field of medicine. Objective to study the value of three-dimensional reconstruction of the lesion site of ventricular septal defect (VSD) in children with ventricular septal defect (VSD) based on 256CT data and to make a solid model of VSD in children. To provide a new perspective for clinical repair of ventricular septal defect. Methods from September 2014 to July 2015, 30 children (17 males and 13 females) with subdry ventricular septal defect (VSD) confirmed by color ultrasound were selected from Zhengzhou Cardiovascular Disease Hospital. The average age was 2 years, 5 months and 3 years, with an average age of 2 years and 8 months. The body weight of 9.6 鹵2.6kg.30 patients with ventricular septal defect (VSD) was examined by color ultrasound and enhanced 256CT cardiac imaging. The equipment was provided by Zhengzhou Cardiovascular Disease Hospital. The equipment model is 0.45mm Philips Brilliance iCT, layer thickness in the Netherlands. The image data of 256CT continuous tomography plain scan medical digital imaging and communication digital Imaging and Communications in medical image (DICOM) are obtained. The obtained DICOM image data is then imported into the medical Mimics19.0 software of Materialise Company in Belgium to optimize the image. To reduce 256CT factors and breathing movement, the heart beats to produce shadows and spots. Determine the threshold range of cardiac contrast agents, myocardium, and fat according to CT imaging principles, and label it. The target region is segmented by using the algorithm of region growth and dynamic region growth in medical Mimics software. Then Mimics software was used to edit the mask, and the editing command function was used for fine segmentation, separation of internal contrast agents, and preservation of normal tissue structure and lesion image. The 3D reconstruction data of 30 children were obtained and the 3D model was printed out by 3DP Unlimited X1000 industrial printer. Results 30 children underwent 3D reconstruction and rapid prototyping technique to guide the repair of ventricular septal defect (VSD). The original CT data were obtained, and then 3D printing was carried out according to the data processed by medical Mimics software. The intraoperative findings were consistent with the changes of lesion structure and the size of ventricular septal defect (VSD) in the pre-operative three-dimensional reconstruction model. The mean diameter of ventricular septal defect measured by 3D reconstruction model was 7.10 鹵0.2mm, and the mean diameter of intraoperative ventricular septal defect was 7.20 鹵0.2mm. There was no significant difference between the two methods. The repair of ventricular septal defect (VSD) was well sutured, the patching was good and the size of the patch was satisfactory. There were no complications such as atrioventricular block and tricuspid valve dysfunction in 30 cases of ventricular septal defect (VSD). The left and right outflow tract was normal and there was no change of outflow tract obstruction and residual leakage after ventricular septal repair. Conclusion 1. Through 3D reconstruction and rapid prototyping, the three-dimensional model of pathological organs can be obtained, including the internal structure of the heart chamber, the anatomic structure of the atrioventricular wall and the vascular structure of the heart. According to the 3D model, it can be used to observe and measure any angle of the lesion, to communicate conveniently before operation, to plan the operation path, to design the operation plan, to guide the operation of ventricular septal defect, and to compare the operation effect. Three-dimensional reconstruction and rapid prototyping can also provide a new perspective for the diagnosis of complex cardiovascular diseases such as tetralogy of Fallot, double outlet of right ventricle, aortic dissection and so on.
【學(xué)位授予單位】:新鄉(xiāng)醫(yī)學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:R726.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 慕乾華;;基于三維雕刻軟件Zbrush創(chuàng)建次世代游戲角色模型的解決方案[J];現(xiàn)代工業(yè)經(jīng)濟(jì)和信息化;2015年12期
2 于偉;紀(jì)芳;;基于ZBrush的數(shù)字雕塑綜合實(shí)驗(yàn)研究[J];實(shí)驗(yàn)技術(shù)與管理;2015年05期
3 王|;張志;張亮;潘永謙;尹飚;楊波;趙洪普;周穎芳;;Mimics數(shù)字化軟件在臨床骨科教學(xué)工作中的應(yīng)用和體會(huì)[J];中國(guó)醫(yī)學(xué)教育技術(shù);2014年05期
4 張剛成;李珊珊;陶涼;;完全性心內(nèi)膜墊缺損并發(fā)右室流出道狹窄的外科治療[J];心臟雜志;2014年06期
5 張輝;程沛;尤斌;侯嘉;金戈;劉迎龍;;雙心室矯治完全型房室間隔缺損合并右心室雙出口或法洛四聯(lián)癥[J];心肺血管病雜志;2014年02期
6 周偉民;閔國(guó)全;李小麗;;3D打印醫(yī)學(xué)[J];組織工程與重建外科雜志;2014年01期
7 饒利兵;向長(zhǎng)和;謝正蘭;楊懿農(nóng);;心臟外科解剖標(biāo)本的設(shè)計(jì)和制作[J];解剖學(xué)研究;2013年02期
8 易定華;段維勛;;中國(guó)主動(dòng)脈夾層診療現(xiàn)狀與展望[J];中國(guó)循環(huán)雜志;2013年01期
9 潘云席;胡國(guó)春;;經(jīng)導(dǎo)管介入治療室問隔膜部缺損32例療效觀察[J];中國(guó)醫(yī)藥指南;2012年34期
10 胡曉儉;任高飛;;右腋下小切口修補(bǔ)室間隔缺損手術(shù)58例[J];現(xiàn)代診斷與治療;2012年05期
,本文編號(hào):1963847
本文鏈接:http://sikaile.net/yixuelunwen/eklw/1963847.html