GDNF和NT-3雙基因誘導(dǎo)BMSCs分化為神經(jīng)樣細(xì)胞的實(shí)驗(yàn)研究
本文選題:大鼠 切入點(diǎn):骨髓間充質(zhì)干細(xì)胞 出處:《華中科技大學(xué)》2013年博士論文 論文類型:學(xué)位論文
【摘要】:目的:建立體外培養(yǎng)擴(kuò)增、檢測鑒定SD大鼠骨髓間充質(zhì)干細(xì)胞(BMSCs)的方法,觀察其生物學(xué)特性; 方法:采取全骨髓培養(yǎng)法分離和純化大鼠BMSCs,用顯微鏡觀察細(xì)胞形體,用流式細(xì)胞儀檢測細(xì)胞純度,觀察BMSCs在誘導(dǎo)條件下向成骨細(xì)胞分化的能力; 結(jié)果:全骨髓培養(yǎng)法培養(yǎng)的BMSCs具有良好的貼壁性,流式細(xì)胞儀檢測:CD44(96.49%)、CD90(95.63%)、CD45(0.64%)、CD34(0.39%);第3代細(xì)胞經(jīng)誘導(dǎo)劑誘導(dǎo)可向成骨細(xì)胞分化; 結(jié)論:本實(shí)驗(yàn)用全貼壁篩選法培養(yǎng)出高純度的BMSCs,增殖穩(wěn)定,在條件誘導(dǎo)下具有多分化的潛能。 目的:利用GDNF和NT-3雙基因轉(zhuǎn)染誘導(dǎo)大鼠骨髓間充質(zhì)干細(xì)胞(BMSCs)分化為神經(jīng)樣細(xì)胞,為其治療神經(jīng)性疾病提供實(shí)驗(yàn)基礎(chǔ); 方法:全骨髓法分離培養(yǎng)BMSCs,流式細(xì)胞術(shù)及成骨誘導(dǎo)預(yù)實(shí)驗(yàn)檢測BMSCs純度及特性。轉(zhuǎn)染GDNF和NT-3雙基因后,在顯微鏡下觀察細(xì)胞形態(tài)變化;利用RT-PCR和免疫熒光檢測神經(jīng)細(xì)胞特異性標(biāo)志物表達(dá); 結(jié)果:BMSCs能在體外成功分離培養(yǎng),誘導(dǎo)分化后,BMSCs胞體變圓,伸出明顯突起,并可見多數(shù)細(xì)胞相互交織成網(wǎng)狀結(jié)構(gòu),呈神經(jīng)細(xì)胞樣形態(tài)。RT-PCR檢測GDNF、NT-3、NSE、nestin、MAP-2基因表達(dá),免疫熒光標(biāo)記檢測可見表達(dá)MAP-2和GFAP; 結(jié)論:GDNF和NT-3雙基因修飾誘導(dǎo)的BMSCs可分化為神經(jīng)樣細(xì)胞,并表達(dá)神經(jīng)元的標(biāo)志,為基因治療神經(jīng)系統(tǒng)疾病如先天性巨結(jié)腸提供實(shí)驗(yàn)基礎(chǔ)。 目的:本研究利用膜片鉗技術(shù),比較MSCs及誘導(dǎo)后神經(jīng)樣細(xì)胞之間通道電流的情況,進(jìn)一步確認(rèn)分化后神經(jīng)樣細(xì)胞的電生理功能,將為腸神經(jīng)系統(tǒng)缺如疾病的治療提供前期工作基礎(chǔ)。 方法:應(yīng)用膜片鉗技術(shù),采用全細(xì)胞記錄方式,對(duì)由GDNF和NT-3雙基因誘導(dǎo)的分化前BMSCs和分化后的神經(jīng)樣細(xì)胞進(jìn)行電生理功能檢測; 結(jié)果:分化前記錄到延遲整流樣鉀電流(IKDR)在+60mV時(shí)電流大小為583.6536±74.75945pA,電流密度為10.25393±1.313413pA/pF;鈣激活鉀通道電流(IKCa)在+60mV時(shí)記錄到電流峰值為370.775±49.57507pA,電流密度為6.513967±0.87096pA/pF;瞬時(shí)外向鉀通道電流(Ito)在+60mV時(shí)電流峰值為467.03±68.44461pA,電流密度為8.205025±1.20247pA/pF;分化后IKDR在+60mV時(shí)電流大小為850.32±53.5708pA,電流密度為18.72207±1.578505pA/pF; IKCa在+60mV時(shí)電流峰值為452.6455±13.4805pA,電流密度為8.058586±0.943178pA/pF; Ito電流峰值為621.194±66.039pA,電流密度為15.00152±1.918339pA/pF;分化前BMSCs的IKDR和分化后神經(jīng)樣細(xì)胞的IKDR在+60mV時(shí)電流峰值相比較具有明顯的統(tǒng)計(jì)學(xué)差異(t=2.721,P值=0.015);分化前IKDRBMSCs電流密度和分化后神經(jīng)樣細(xì)胞IKDR電流密度相比較亦具有明顯的統(tǒng)計(jì)學(xué)差異(t=2.441,P值=0.030); 結(jié)論:大鼠骨髓BMSCs誘導(dǎo)分化的神經(jīng)元樣細(xì)胞初步具有神經(jīng)元的電生理特性,,是BMSCs由神經(jīng)前體細(xì)胞向成熟神經(jīng)元這一終點(diǎn)轉(zhuǎn)化過程中由未成熟逐漸邁向成熟的過程。
[Abstract]:Objective: to establish a method for detection and identification of bone marrow mesenchymal stem cells (BMSCs) in SD rats in vitro, and to observe the biological characteristics of the bone marrow mesenchymal stem cells (BMSCs).
Methods: whole bone marrow culture was used to isolate and purify rat BMSCs. Cell morphology was observed by microscope. The purity of cells was detected by flow cytometry, and the ability of BMSCs to differentiate into osteoblasts under induction conditions was observed.
Results: BMSCs cultured in whole bone marrow culture showed good adherence. Flow cytometry showed that CD44 (96.49%), CD90 (95.63%), CD45 (0.64%), CD34 (0.39%), and third generation cells could differentiate into osteoblasts through inducers.
Conclusion: in this experiment, the highly purified BMSCs was cultured with full wall screening method, and the proliferation was stable, and it had the potential of multi differentiation under the condition of condition induced.
Objective: to induce rat bone marrow mesenchymal stem cells (BMSCs) to differentiate into neuron like cells by double gene transfection of GDNF and NT-3, and provide experimental basis for their treatment of neuropathic diseases.
Methods: BMSCs was isolated and cultured in whole bone marrow, and the purity and characteristics of BMSCs were detected by flow cytometry and osteogenic induction. After transfection of GDNF and NT-3 double genes, morphological changes of cells were observed under microscope. RT-PCR and immunofluorescence were used to detect the expression of specific markers of nerve cells.
Results: BMSCs can be successfully isolated and cultured in vitro after induced differentiation, BMSCs cells became round, protruding obvious protrusions, and most visible cells interwoven into the mesh structure, a neural cell like morphology of.RT-PCR NT-3, NSE, detection of GDNF, nestin, MAP-2 gene expression, immunofluorescence detection showed the expression of MAP-2 and GFAP;
Conclusion: GDNF and NT-3 double gene modified BMSCs can differentiate into neuron like cells and express neuronal markers, providing experimental basis for gene therapy of nervous system diseases such as Hirschsprung's disease.
Objective: in this study, patch clamp technique was used to compare the channel currents between MSCs and induced neuron like cells. Further confirmation of the electrophysiological function of neural cells after differentiation will provide a preliminary basis for the treatment of diseases of the intestinal nervous system.
Methods: patch clamp technique and whole cell recording were used to detect the electrophysiological function of pre differentiated BMSCs and differentiated neuron like cells induced by GDNF and NT-3 double genes.
Results: before differentiation recorded delayed rectifier-like potassium current (IKDR) in +60mV when the current size is 583.6536 + 74.75945pA, the current density was 10.25393 + 1.313413pA/pF; calcium activated potassium current (IKCa) in the +60mV record to the current peak was 370.775 + 49.57507pA, the current density was 6.513967 + 0.87096pA/pF; transient outward potassium current (Ito) at +60mV peak current was 467.03 + 68.44461pA, the current density was 8.205025 + 1.20247pA/pF; differentiation after size IKDR in +60mV current was 850.32 + 53.5708pA, the current density was 18.72207 + 1.578505pA/pF; IKCa current at +60mV peak current density was 452.6455 + 13.4805pA, 8.058586 + 0.943178pA/pF; the peak current of Ito was 621.194 + 66.039pA and the current density was 15.00152 + 1.918339pA/pF; BMSCs IKDR before differentiation and differentiation of neuron like cells of the IKDR current in the +60mV when compared with the peak Significant statistical difference (t=2.721, P value =0.015). The IKDRBMSCs current density before differentiation and the IKDR current density after differentiation were also significantly different (t=2.441, P value =0.030).
Conclusion: the neuron like cells derived from rat bone marrow BMSCs have the electrophysiological characteristics of neurons. It is the process from immature BMSCs to mature neurons in the process of transformation from neural precursor cells to mature neurons.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:R725.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 劉云云;趙興緒;趙紅斌;葛寶豐;劉興炎;陳克明;;Ca~(2+)信號(hào)介導(dǎo)川芎嗪誘導(dǎo)小鼠骨髓間充質(zhì)干細(xì)胞向神經(jīng)細(xì)胞的定向分化[J];甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào);2010年02期
2 徐金霞;李家鋒;韓建國;管海虹;崔群;孫秀英;;大鼠骨髓間充質(zhì)干細(xì)胞生物學(xué)特性的研究[J];中國醫(yī)藥科學(xué);2012年09期
3 陳慧麗;李小林;;骨髓間充質(zhì)干細(xì)胞免疫調(diào)節(jié)作用的研究進(jìn)展[J];中國美容醫(yī)學(xué);2011年12期
4 高賀云;魏明發(fā);王燕;吳曉娟;朱天琦;;Differentiation of GDNF and NT-3 Dual Gene-modified Rat Bone Marrow Mesenchymal Stem Cells into Enteric Neuron-like Cells[J];Journal of Huazhong University of Science and Technology(Medical Sciences);2012年01期
5 趙林;馮智慧;焦淑賢;李南南;;全骨髓貼壁法分離培養(yǎng)大鼠骨髓間充質(zhì)干細(xì)胞及其生物學(xué)特性[J];中國組織工程研究與臨床康復(fù);2011年32期
本文編號(hào):1622535
本文鏈接:http://sikaile.net/yixuelunwen/eklw/1622535.html