α-細辛醚開啟斑馬魚血腦屏障作用機制及其生物安全性的研究
[Abstract]:The effect of alpha-asarone on the structure of blood brain barrier (BBB) and the expression of tight junction protein family Claudin, occludin, ZO, JAM genes in zebrafish was studied in order to elucidate the mechanism of alpha-asarone opening blood brain barrier, and to evaluate the biological safety of alpha-asarone, mainly on the reproductive toxicity and the expression of JAM genes in zebrafish. The embryo development toxicity was studied to lay a theoretical foundation for the clinical application of alpha-asarone in human and livestock.Dextran Texas Red was injected into the heart of juvenile zebrafish by cardiac injection and then immersed in alpha-asarone solution. Macromolecular fluorescent substances entered the brain through the blood-brain barrier (BBB), and the ultrastructure of the BBB was observed by transmission electron microscopy (TEM) after the adult zebrafish were injected with alpha-asarone via abdominal cavity. Real-time quantitative PCR (RT-qPCR) was used to study the effects of alpha-asarone on the expression and timeliness of Claudin, ZO, occludin and JAM genes in zebrafish tightly junction proteins; the biological safety of alpha-asarone on embryonic development toxicity and the insemination of 3 h (Hours post-ferilization, hpf) zebrafish embryos into different concentrations. The morphological changes of embryos at 24 hpf, 48 hpf, 72 HPF and 96 HPF were observed. The frequency of spontaneous twitching, hatching rate, heart rate, deformity rate and mortality of zebrafish embryos were measured, including pericardial edema, spinal curvature, tail curvature, yolk, etc. The effect of alpha-asarone on SEPN1 gene expression in zebrafish was detected by RT-qPCR. The effect of alpha-asarone on movement pattern and ability of juvenile zebrafish was evaluated by Noldus, a zebrafish behavioral system. After soaking in culture water and alpha-asarone ether, it was found that the blood vessels of zebrafish were blurred after soaking in alpha-asarone ether for 30 minutes, and a small amount of fluorescent substances were exuded. After soaking in alpha-asarone for 60 minutes, the blood vessels of zebrafish became more blurred, indicating that a large amount of fluorescent substances had exuded from the blood vessels, but not seen in the control group. The results of electron microscopy showed that after administration of alpha-asarone, the endothelial cells contracted slightly, the basement membrane of BBB expanded and ruptured, and the tight junction loosened. After intraperitoneal injection of alpha-asarone for one hour, most of the Claudin family genes, such as Claudin-19, -k, -j, -5a, -7a, -7b, -a, -h, -11a, were down-regulated. Claudin-5b, -11b was up-regulated. Claudin-2 was not up-regulated. Other family genes such as JAM, -2A, -2B, -3A, o, 3B, etc. After intraperitoneal injection of alpha-asarone, Claudin 5A was down-regulated most obviously at 1 h, and recovered gradually at 2 h, and returned to normal level at 8 h. After exposing zebrafish embryos to different concentrations of alpha-asarone, the number of spontaneous twitches of 24hpf zebrafish decreased. The results showed that the hatching rate and mortality of juvenile zebrafish at 96 HPF were significantly different, and the movement of juvenile zebrafish was inhibited with the increase of concentration of alpha-asarone. Aromatic rehabilitative drugs can down-regulate the gene expression of claudin family, resulting in loose tight junction structure, destruction of basement membrane structure and shrinkage of endothelial cells, weakening the barrier function of blood brain barrier, thus opening the blood brain barrier and playing an enlightening role. Physiologically, it does not cause pathological damage to the brain. In terms of drug safety, high concentration of alpha-asarone has obvious toxic effect on zebrafish embryo development. It suggests that human and animal clinical use of alpha-asarone cautiously.
【學位授予單位】:內(nèi)蒙古民族大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:S853.7
【相似文獻】
相關期刊論文 前7條
1 陳洪流;趙靜國;謝令德;王旭東;潘俊;陳思思;;細辛醚衍生物的合成及其殺蟲活性研究[J];化學與生物工程;2009年08期
2 邱艷;宋旭紅;黃衍章;;玉米象成蟲對β-細辛醚中毒的行為反應及殺蟲機理研究[J];中國糧油學報;2014年07期
3 王旭東;趙靜國;謝令德;李政;宋萍;;α-細辛醚衍生物的合成研究[J];化學與生物工程;2010年05期
4 張靜;馮崗;馬志卿;馮俊濤;張興;;細辛醚對6種農(nóng)業(yè)害蟲的殺蟲活性[J];西北農(nóng)林科技大學學報(自然科學版);2008年04期
5 王興明,楊定明,王清成;順2,4,5—三甲氧基苯丙烯的合成[J];西南工學院學報;1999年01期
6 張靜;馮崗;馬志卿;馮俊濤;張興;;細辛醚對粘蟲幼蟲的毒力及幾種重要酶系的影響[J];昆蟲學報;2007年06期
7 ;[J];;年期
相關會議論文 前3條
1 徐敏;馬偉斌;粱文權;;α-細辛醚大鼠、兔、人尸皮體外透皮釋放比較[A];浙江省藥劑學術會議論文集[C];2006年
2 徐敏;馬偉斌;梁文權;;α-細辛醚貼劑的制備和皮膚刺激性考察[A];浙江省藥劑學術會議論文集[C];2006年
3 魏立平;王文俊;吳玫涵;;石菖蒲揮發(fā)油中α-細辛醚、β-細辛醚血藥濃度的同時測定[A];色譜分析在藥物分析中的應用專題學術研討會論文集[C];2004年
相關重要報紙文章 前2條
1 李延斌;菖蒲藥理研究新進展[N];中國醫(yī)藥報;2004年
2 仲海亮;石菖蒲主要成分具抗癲癇功效[N];中國醫(yī)藥報;2006年
相關博士學位論文 前8條
1 陳奕芝;β-細辛醚對谷氨酸所致神經(jīng)元損傷的保護作用[D];廣州中醫(yī)藥大學;2007年
2 劉林;石菖蒲成分β-細辛醚減輕缺血再灌注腦損傷的自噬機理研究[D];廣州中醫(yī)藥大學;2012年
3 張升;石菖蒲成分β-細辛醚對帕金森病模型大鼠作用的自噬機制研究[D];廣州中醫(yī)藥大學;2014年
4 邱東鷹;β-細辛醚對氣道副交感節(jié)前運動神經(jīng)元突觸傳遞的抑制作用[D];復旦大學;2012年
5 李菲;β-細辛醚靶向ROCK通路抗阿爾茨海默病神經(jīng)突觸損傷的分子機制[D];廣州中醫(yī)藥大學;2015年
6 莫鎮(zhèn)濤;β-細辛醚對缺糖缺氧PC12細胞自噬的影響[D];廣州中醫(yī)藥大學;2012年
7 楊立彬;中藥石菖蒲及其主要成分α-細辛醚抗幼鼠癲癇作用的實驗研究[D];吉林大學;2004年
8 李志強;β-細辛醚對AD大鼠學習記憶的影響及血管保護機制研究[D];暨南大學;2010年
相關碩士學位論文 前10條
1 尚艷楠;α-細辛醚開啟斑馬魚血腦屏障作用機制及其生物安全性的研究[D];內(nèi)蒙古民族大學;2015年
2 王旭東;石菖蒲中α-細辛醚類衍生物的合成與殺蟲活性研究[D];武漢工業(yè)學院;2010年
3 宋金鳳;中藥成分細辛醚的熒光性質(zhì)與分析方法研究[D];河北師范大學;2012年
4 徐敏;α-細辛醚經(jīng)皮給藥貼劑的研究[D];浙江大學;2002年
5 吳爭;α-細辛醚經(jīng)皮給藥系統(tǒng)的研究[D];浙江大學;2006年
6 石琛;石菖蒲有效單體β-細辛醚在家兔體內(nèi)的藥代動力學研究[D];廣州中醫(yī)藥大學;2006年
7 陳洪流;細辛醚及其衍生物的合成與生物活性初步研究[D];武漢工業(yè)學院;2009年
8 魏立平;石菖蒲揮發(fā)油中β-細辛醚的藥代動力學研究[D];中國人民解放軍軍事醫(yī)學科學院;2003年
9 李成沖;石菖蒲活性成分β-細辛醚抗老年癡呆模型大鼠海馬細胞凋亡作用及機制[D];佳木斯大學;2010年
10 王綺雯;β-細辛醚對體外培養(yǎng)心肌細胞缺血/再灌注損傷的保護作用[D];廣州中醫(yī)藥大學;2007年
,本文編號:2195921
本文鏈接:http://sikaile.net/yixuelunwen/dongwuyixue/2195921.html