基于SLAF-seq技術(shù)對(duì)京海黃雞生長、屠宰及部分抗病性狀的全基因組關(guān)聯(lián)分析
本文選題:京海黃雞 + 生長性狀 ; 參考:《揚(yáng)州大學(xué)》2015年博士論文
【摘要】:生長性狀和屠宰性狀是雞產(chǎn)業(yè)非常重要的兩個(gè)經(jīng)濟(jì)性狀,傳統(tǒng)方法采用選育的方式對(duì)這兩個(gè)經(jīng)濟(jì)性狀進(jìn)行選擇;而雞遺傳方面,目前對(duì)于抗病性狀的研究較少。隨著生物技術(shù)的發(fā)展,標(biāo)記輔助選擇縮短了動(dòng)物的選育過程,節(jié)省了大量的時(shí)間、金錢,成為目前育種工作的重點(diǎn)。遺傳標(biāo)記的選擇方法主要有候選基因法和數(shù)量性狀基因座定位法,但這些方法也有其不足之處。簡化基因組測序法是將雞基因組“簡化”后通過測序得到的整個(gè)基因組范圍內(nèi)的單核昔酸為分子標(biāo)記,以發(fā)現(xiàn)影響復(fù)雜性狀發(fā)生的遺傳標(biāo)記和遺傳標(biāo)記的分布特征為目的,對(duì)復(fù)雜的經(jīng)濟(jì)性狀進(jìn)行直接關(guān)聯(lián)分析的一種方法。該法作為全基因組關(guān)聯(lián)分析的一種,被認(rèn)為是一種確定影響重要性狀(如雞的生長性狀、屠宰性狀和抗病性狀等)分子標(biāo)記的有效方法。全基因組關(guān)聯(lián)分析與之前的方法比較其最大優(yōu)點(diǎn)是不需要構(gòu)建任何不確定的假設(shè)。所以,本研究以京海黃雞為試驗(yàn)動(dòng)物,利用SLAF-seq簡化基因組測序的方法,對(duì)京海黃雞的10個(gè)生長性狀、13個(gè)屠宰性狀和6個(gè)抗病性狀進(jìn)行了基因組水平上的關(guān)聯(lián)分析,旨在尋找影響京海黃雞這些重要性狀的關(guān)鍵遺傳標(biāo)記以及遺傳標(biāo)記的分布規(guī)律,尋找京海黃雞上述重要性狀的候選基因,促進(jìn)京海黃雞重要性狀分子標(biāo)記的研究,為京海黃雞和其他雞種的選育提高提供良好的平臺(tái)。主要研究結(jié)果如下:1.對(duì)樣品DNA進(jìn)行簡化基因組測序,通過adimixture軟件計(jì)算群體結(jié)構(gòu),隨后利用兩種TASSEL模型:一般線性模型(GLM)和混合線性模型(MLM)對(duì)基因型數(shù)據(jù)和京海黃雞生長性狀、屠宰性狀和部分抗病性狀進(jìn)行了全基因組關(guān)聯(lián)分析,同時(shí)采用連鎖不平衡修正的Bonferoni法進(jìn)行多重比較校正,并重點(diǎn)討論了GLM模型基因組水平顯著和MLM模型基因組潛在顯著以上水平的SNPs,并利用COG、GO和KEGG等數(shù)據(jù)庫對(duì)候選基因進(jìn)行功能富集注釋。結(jié)果表明,TASSEL兩種模型均能較好的校正群體分層的影響,并且兩種模型識(shí)別出的SNPs大部分相同,但是相同SNP在MLM中的P值要略大于GLM。兩個(gè)模型中,MLM校正更嚴(yán)格,具有較高的準(zhǔn)確性,能夠較好的避免假陽性結(jié)果,但可能會(huì)由于過于嚴(yán)格的校正導(dǎo)致假陰性結(jié)果,GLM模型具有較好的統(tǒng)計(jì)效力,但可能會(huì)由于較寬松的校正條件造成假陽性結(jié)果,因此本研究采用了GLM和MLM兩種模型互為比較和補(bǔ)充,對(duì)京海黃雞的上述三個(gè)重要性狀進(jìn)行了全基因組關(guān)聯(lián)分析,以期獲得較為準(zhǔn)確和全面的結(jié)果。2.生長性狀的關(guān)聯(lián)分析中,GLM模型發(fā)現(xiàn)了19個(gè)與生長性狀顯著關(guān)聯(lián)的SNPs(P1.87E-06),篩選出相關(guān)基因9個(gè),某些基因與多個(gè)生長性狀同時(shí)顯著關(guān)聯(lián),如LDB2、 QDPR、INTS6、BOD1L1等,發(fā)現(xiàn)了102個(gè)與生長性狀潛在顯著關(guān)聯(lián)的SNPs (1.87E-06 P3.75E-05);MLM模型發(fā)現(xiàn)了16個(gè)達(dá)到潛在顯著以上水平的SNPs(3個(gè)基因組水平顯著),相關(guān)候選基因7個(gè),如QDPR、LDB2、FAM124A、NUK1等,這些基因均十分重要。同時(shí)注意到LDB2、QDPR基因不管在GLM還是MLM模型中均同時(shí)與多個(gè)生長性狀顯著關(guān)聯(lián)。其中部分基因有一些報(bào)道,如LDB2、QDPR等,而CHST1、GPR78、VISIG4、 HS3ST1、FHIT等9個(gè)基因?yàn)楸狙芯渴状伟l(fā)現(xiàn)的可能影響京海黃雞生長性狀的候選基因。發(fā)現(xiàn)4號(hào)染色體上75.6-80.7Mb區(qū)域?yàn)橛绊懢┖|S雞生長性狀的主要功能區(qū)域。根據(jù)KEGG注釋到了2個(gè)可能對(duì)京海黃雞生長性狀有重要作用的信號(hào)通路:葉酸合成通路和粘多糖合成通路(KEGG:00790和KEGG:00533)。最終根據(jù)關(guān)聯(lián)分析結(jié)果和已有的文獻(xiàn)報(bào)道,初步確定了一些影響京海黃雞生長性狀的SNPs和候選基因,如LDB2基因附近的rs313973972、QDPR附近的rs14491071、BOD1LI附近的rs14492338、INTS6附近的rs14917720和GPR78附近的rs317168946等。3.屠宰性狀的全基因組關(guān)聯(lián)分析中,GLM模型共發(fā)現(xiàn)與屠宰性狀基因組水平顯著的SNPs共16個(gè)(P1.87E-06),其中4號(hào)染色體的75.50-76.14Mb區(qū)域內(nèi)的7個(gè)SNPs與屠體重、腳重、翅重均關(guān)聯(lián)顯著,同時(shí)篩選出相關(guān)功能基因12個(gè),如FAM184B、QDPR,LAP3和ECL1等,發(fā)現(xiàn)了81個(gè)與屠宰性狀潛在顯著關(guān)聯(lián)的SNPs(1.87E-06P3.75E-05)。MLM模型共識(shí)別出12個(gè)潛在顯著以上水平的SNPs(8個(gè)達(dá)到基因組顯著水平),相關(guān)基因8個(gè),且這些位點(diǎn)也均在GLM模型中被檢測到。所有的SNPs中,部分SNPs與多個(gè)性狀顯著關(guān)聯(lián)或潛在顯著關(guān)聯(lián)。根據(jù)KEGG注釋到四個(gè)可能影響京海黃雞屠宰性狀的通路:脂肪酸代謝通路、葉酸合成通路、基底轉(zhuǎn)錄因子通路和精氨酸代謝通路(ko00330、KEGG:00790、KEGG:03022和ko00330)。其中有些基因有一些報(bào)道,如FAM184B、 QDPR、LAP3、FGFBP2、LDB2等,同時(shí)發(fā)現(xiàn)了ECL1、ZNF302、GTF2H5等七個(gè)新的候選基因。根據(jù)文章得到的結(jié)果結(jié)合相關(guān)文獻(xiàn),初步確定了京海黃雞屠宰性狀的關(guān)鍵SNPs和基因,如FAM184B內(nèi)的rs14710787、rs16023603對(duì)腳重、SKIDA1附近的rs14710787、 rs13755802對(duì)腹脂重以及GTF2H5附近的rs14359385、rs315486571和TMEM181附近的rs318008335對(duì)全凈膛重、FGFBP2內(nèi)的rs15148082對(duì)屠體重、PG02內(nèi)的rs317080707對(duì)翅重等。4.部分抗病性狀的全基因組關(guān)聯(lián)分析中,GLM模型共發(fā)現(xiàn)4個(gè)基因組水平顯著SNPs,其中1個(gè)與禽流感抗病性狀、2個(gè)與新城疫抗病性狀、1個(gè)與γ干擾素抗病性狀,相關(guān)候選基因3個(gè);MLM模型共識(shí)別出8個(gè)達(dá)到潛在顯著以上水平的SNPs,相關(guān)基因5個(gè),其中SETBP1基因也被GLM模型檢測到。由于雞遺傳方面抗病性狀研究較少,因此這些基因在雞上均未見報(bào)道,但結(jié)合文獻(xiàn)發(fā)現(xiàn)有些基因的突變會(huì)導(dǎo)致一些重要信號(hào)通路的中斷,影響多種疾病進(jìn)程。因此推測這些基因的突變也可能對(duì)京海黃雞的抗病性狀有重要的影響,為下一步工作指明了方向,值得進(jìn)一步研究,如Plexin B1基因內(nèi)部的rs316966201、rs312624692和PDGFC內(nèi)的rs317837423對(duì)新城疫抗病性狀,NSUN7基因內(nèi)部的rs15613786對(duì)禽流感抗病性狀和USP7附近的rs313017675對(duì)傳染性支氣管炎抗病性狀等。
[Abstract]:Growth traits and slaughter traits are two important economic traits in the chicken industry. The traditional methods choose the two economic characters by selection, while the chicken genetics, the study of the resistance traits is less. With the development of biotechnology, marker assisted selection shortens the breeding process of animals and saves a lot. Time and money have become the focus of current breeding work. The selection methods of genetic markers mainly include candidate gene method and quantitative trait loci location method, but these methods also have its shortcomings. A method of direct correlation analysis for complex economic traits, as one of the whole genome association analysis, which is considered to be a method for determining important traits (such as chicken growth traits, slaughter traits and disease resistance traits, etc.), in order to detect the distribution characteristics of genetic markers and genetic markers that affect complex traits. An effective method of molecular markers. The greatest advantage of the whole genome association analysis and the previous method is that there is no need to construct any uncertain hypothesis. Therefore, this study took Beijing sea chicken as a test animal, using SLAF-seq simplified genome sequencing method, 10 growth traits, 13 slaughter traits and 6 disease resistance traits of Jinghai yellow chicken. In order to find the key genetic markers and the distribution rules of the important traits of Jinghai yellow chicken, to find the candidate genes of the important traits of Jinghai yellow chicken, and to promote the study on the molecular markers of the important characters of the Beijing yellow chicken, and improve the breeding of the yellow chicken and other chicken breeds in Beijing. The main research results were as follows: 1. simplified genome sequencing of sample DNA, calculated population structure by adimixture software, and then used two TASSEL models: general linear model (GLM) and mixed linear model (MLM) for genotypic data and Jing Haihuang chicken growth traits, slaughter traits and partial resistance traits. Complete genome association analysis and multiple comparison correction using Bonferoni method of linkage disequilibrium correction, and focus on the significant GLM model genome level and the potential significant level of MLM model genome, and use COG, GO, KEGG and other databases to enrich the candidate base for functional enrichment. The results show that TASSEL is two species. The model can well correct the influence of group stratification, and the two models identified most of the same SNPs, but the P value of the same SNP in MLM is slightly larger than that of the two GLM. models. The MLM correction is more strict and has a higher accuracy, which can better avoid false positive results, but it may be due to too strict correction to lead to false negative negative. As a result, the GLM model has a good statistical effect, but it may result in false positive results due to the looser correction conditions. Therefore, two models of GLM and MLM are compared and supplemented in this study. The whole genome association of the three important characters of Beijing yellow chicken is analyzed in order to obtain a more accurate and comprehensive result of.2. birth. In the association analysis of long traits, the GLM model found 19 SNPs (P1.87E-06) which was significantly associated with growth traits, and screened 9 related genes. Some genes were associated with multiple growth traits, such as LDB2, QDPR, INTS6, BOD1L1 and so on. 102 SNPs (1.87E-06 P3.75E-05), which was potentially associated with the growth traits, was found, and the MLM model was found. 16 potential significant levels of SNPs (3 genomic levels are significant), and 7 related candidate genes, such as QDPR, LDB2, FAM124A, NUK1, are all very important. At the same time, it is noted that LDB2, QDPR genes are associated with multiple growth traits in both GLM and MLM models. Some of these genes have some reports, such as LDB2, Q. DPR et al, and CHST1, GPR78, VISIG4, HS3ST1, FHIT and other 9 genes that may affect the growth traits of the Beijing yellow chicken for the first time. It is found that the 75.6-80.7Mb region on chromosome 4 is the main function area affecting the growth traits of Beijing yellow chicken. According to the KEGG annotation, 2 may be important for the growth traits of the Beijing yellow chicken. The signal pathways used: folic acid synthesis pathway and mucopolysaccharide synthesis pathway (KEGG:00790 and KEGG:00533). Finally, according to the results of association analysis and the existing literature, some SNPs and candidate genes affecting the growth traits of Beijing yellow chicken, such as rs313973972 near the LDB2 gene, rs14491071 near QDPR, and rs144923 near BOD1LI, are determined. 38, in the whole genome association analysis of.3. slaughter traits near rs14917720 and GPR78 near INTS6, the GLM model found a total of 16 (P1.87E-06) of SNPs in the genome level of slaughtering traits, of which 7 SNPs in the 75.50-76.14Mb region of chromosome 4 were significantly associated with slaughter weight, foot weight and wing weight, and were screened at the same time. 12 related functional genes, such as FAM184B, QDPR, LAP3 and ECL1, have found that 81 SNPs (1.87E-06P3.75E-05).MLM models, which are potentially significantly associated with slaughter traits, identify 12 potentially significant levels of SNPs (8 significant levels of genome), and 8 related genes, and all these loci are detected in the GLM model. All SNPs are also detected. Part SNPs is significantly associated with or potentially significant associations with multiple traits. According to the KEGG annotation, there are four pathways that may affect the slaughter traits of the Beijing yellow chicken: the fatty acid pathway, the folate synthesis pathway, the basal transcription factor pathway and the arginine metabolic pathway (ko00330, KEGG:00790, KEGG:03022 and ko00330). Some of these genes have some reports. Seven new candidate genes, such as FAM184B, QDPR, LAP3, FGFBP2, LDB2 and so on, have been found, such as ECL1, ZNF302, GTF2H5 and so on. According to the results obtained in this article, the key SNPs and genes are identified, such as rs14710787 in FAM184B. In the whole genome association analysis of the total net weight, rs15148082 in FGFBP2, rs15148082 in FGFBP2, rs317080707 to wing weight and other.4. part resistance traits in PG02 near rs14359385, rs315486571 and TMEM181 near GTF2H5, the GLM model found that 4 genes were significant SNPs, of which 1 were resistant to avian influenza. 2 against NDV disease resistance traits, 1 with interferon gamma resistance traits and 3 related candidate genes; MLM model identified 8 potential significant levels and 5 related genes, of which the SETBP1 gene was also detected by the GLM model. The genes were not reported in chicken genetic aspects, so these genes were not reported on chickens. But it is found that mutations in some genes may lead to interruptions of some important signaling pathways and affect a variety of disease processes. Therefore, it is presumed that the mutation of these genes may also have an important impact on the disease resistance of the yellow chicken in Beijing, which is a direction for further work, such as rs316966201 within the Plexin B1 gene. The resistance traits of rs317837423 in rs312624692 and PDGFC to Newcastle disease, the rs15613786 against avian influenza in the NSUN7 gene and the resistance to infectious bronchitis by rs313017675 near USP7, and so on.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:S831
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于光華,王樂凱,趙忷新;小麥多品質(zhì)性狀相關(guān)性的初步分析[J];作物雜志;1994年06期
2 周元;西蒙得木種子性狀相關(guān)分析初報(bào)[J];中國油料;1997年04期
3 楊月瑩;劉娣;丁常宏;祁雪蓮;;目標(biāo)規(guī)劃模型在豬抗寒性狀相關(guān)基因篩選中的應(yīng)用[J];廣東農(nóng)業(yè)科學(xué);2013年12期
4 馮祖蝦;番薯的性狀相關(guān)在雜交育種上的應(yīng)用[J];廣東農(nóng)業(yè)科學(xué);1978年04期
5 ;知識(shí)卡片[J];種子世界;1986年09期
6 周光標(biāo),孫漢,蘭瑞廷,林樹茂,溫慶琪;白耳雞若干產(chǎn)蛋性狀的相關(guān)分析[J];中國畜牧雜志;1988年02期
7 柴永山;;北方早粳主要性狀相關(guān)通徑的分析[J];牡丹江師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2001年03期
8 陸根堯;秈稻數(shù)量性狀相關(guān)遺傳力的研究[J];遺傳;1988年03期
9 紀(jì)國鋒,金哲虎,陶麗霞,戚繼忠;樹木葉片各性狀相關(guān)關(guān)系的研究[J];吉林林業(yè)科技;2001年06期
10 陳海燕,呂鴻,朱海平,傅衍,盧立志;紹興鴨產(chǎn)蛋、生長及血液性狀間的典型相關(guān)分析[J];浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版);2003年03期
相關(guān)會(huì)議論文 前10條
1 涂忠虞;潘明建;邱龍廣;蘇國清;;編織柳的性狀相關(guān)變異及其選擇指數(shù)[A];全國林木遺傳育種第五次學(xué)術(shù)報(bào)告會(huì)論文匯編[C];1986年
2 周勇;李正一;劉偉;王冬蘭;羅克英;湯述翥;顧銘洪;梁國華;;水稻高產(chǎn)性狀相關(guān)基因的鑒定和功能分析[A];江蘇省遺傳學(xué)會(huì)第七屆二次代表大會(huì)暨學(xué)術(shù)研討會(huì)論文摘要匯編[C];2008年
3 盛哲雅;高宇;胡曉湘;鄧學(xué)梅;李寧;;雞4號(hào)及5號(hào)染色體上關(guān)于體重及脛骨長性狀的初步定位[A];中國動(dòng)物遺傳育種研究進(jìn)展——第十五次全國動(dòng)物遺傳育種學(xué)術(shù)討論會(huì)論文集[C];2009年
4 周艷;雷秋霞;韓海霞;李桂明;李福偉;曹頂國;;雞PLIN基因多態(tài)性與胴體及脂肪性狀的相關(guān)[A];安全優(yōu)質(zhì)的家禽生產(chǎn)——第十五次全國家禽學(xué)術(shù)討論會(huì)論文集[C];2011年
5 孫艷發(fā);劉冉冉;鄭麥青;趙桂蘋;陳繼蘭;文杰;;雞體重性狀QTL的全基因組關(guān)聯(lián)研究[A];第三屆(2012)中國黃羽肉雞行業(yè)發(fā)展大會(huì)會(huì)刊[C];2012年
6 陳少康;劉欣;梁晶;顏華;王楚端;;影響豬免疫性狀單倍型關(guān)聯(lián)分析[A];“生泰爾”杯全國養(yǎng)豬技術(shù)征文大賽——中國畜牧獸醫(yī)學(xué)會(huì)養(yǎng)豬學(xué)分會(huì)五屆三次理事會(huì)暨生豬產(chǎn)業(yè)科技創(chuàng)新發(fā)展論壇論文集[C];2012年
7 潘增祥;許丹;陳杰;謝莊;劉紅林;;仔母豬生殖細(xì)胞數(shù)性狀解析[A];中國畜牧獸醫(yī)學(xué)會(huì)2006學(xué)術(shù)年會(huì)論文集(上冊)[C];2006年
8 王彥博;李輝;;雞Perilipin基因多態(tài)性與生長和體組成性狀的相關(guān)研究[A];中國家禽科學(xué)研究進(jìn)展——第十四次全國家禽科學(xué)學(xué)術(shù)討論會(huì)論文集[C];2009年
9 賈曉旭;虞德兵;徐善金;陸應(yīng)林;杜文興;;鴿生長激素(GH)基因多態(tài)性及其與體重和屠宰性狀的關(guān)聯(lián)分析[A];第十二次全國畜禽遺傳標(biāo)記研討會(huì)論文集[C];2010年
10 童海兵;高玉時(shí);王克華;陳國宏;屠云潔;盧克倫;;雞微衛(wèi)星DNA標(biāo)記與部分屠宰性狀相關(guān)性分析[A];第十次全國畜禽遺傳標(biāo)記研討會(huì)論文集[C];2006年
相關(guān)重要報(bào)紙文章 前2條
1 ;三年后可用“基因”改良樹木性狀[N];科技日報(bào);2002年
2 上海奶牛育種中心有限公司 崔勝;現(xiàn)代奶牛育種方法[N];中國畜牧報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 李娜;基于GWAS的豬肉品質(zhì)性狀候選基因研究[D];中國農(nóng)業(yè)大學(xué);2016年
2 王文浩;基于SLAF-seq技術(shù)對(duì)京海黃雞生長、屠宰及部分抗病性狀的全基因組關(guān)聯(lián)分析[D];揚(yáng)州大學(xué);2015年
3 王立剛;豬全基因組拷貝數(shù)變異草圖構(gòu)建及體尺性狀全基因組關(guān)聯(lián)分析[D];中國農(nóng)業(yè)科學(xué)院;2013年
4 楊金娥;豬12號(hào)染色體上10個(gè)新基因的分離、定位及其與部分性狀的關(guān)聯(lián)分析[D];華中農(nóng)業(yè)大學(xué);2004年
5 何文波;豬APC家族3個(gè)基因克隆鑒定、轉(zhuǎn)錄調(diào)控及與性狀關(guān)聯(lián)分析研究[D];華中農(nóng)業(yè)大學(xué);2010年
6 張國政;家蠶第2白卵性狀相關(guān)基因表達(dá)的研究[D];浙江大學(xué);2010年
7 金亮;水稻關(guān)聯(lián)定位群體的構(gòu)建及若干品質(zhì)性狀的關(guān)聯(lián)分析[D];浙江大學(xué);2009年
8 曾治君;豬血脂性狀的遺傳解析[D];江西農(nóng)業(yè)大學(xué);2014年
9 張翔宇;綿羊胴體成分性狀QTL的元分析及相關(guān)基因的克隆、時(shí)空表達(dá)譜分析[D];四川農(nóng)業(yè)大學(xué);2009年
10 王軍;豬八個(gè)候選基因的分離、特征分析多態(tài)性及其與性狀間的關(guān)聯(lián)分析[D];華中農(nóng)業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 肖銀;釀酒酵母抗乙酸脅迫性狀的數(shù)量性狀基因座定位[D];江南大學(xué);2015年
2 周鑫;基于山豬—肉嫩度表觀性狀的形態(tài)計(jì)量學(xué)和分子學(xué)機(jī)理的研究[D];南京師范大學(xué);2015年
3 趙文霞;亞熱帶常綠闊葉林常見樹種根莖葉功能性狀研究[D];北京林業(yè)大學(xué);2016年
4 姚慶收;橡膠樹干膠產(chǎn)量性狀相關(guān)基因的連鎖標(biāo)記研究[D];華南熱帶農(nóng)業(yè)大學(xué);2004年
5 楊桓;雞產(chǎn)蛋相關(guān)基因多態(tài)性檢測及其與蛋用性狀的關(guān)聯(lián)分析[D];華中農(nóng)業(yè)大學(xué);2011年
6 郭薇;鯽體重和體厚性狀的QTL定位研究[D];哈爾濱師范大學(xué);2013年
7 張磊;雞部分免疫性狀全基因組關(guān)聯(lián)分析研究[D];中國農(nóng)業(yè)科學(xué)院;2012年
8 羅英;辣椒種質(zhì)資源主要性狀的分析與評(píng)價(jià)[D];中國農(nóng)業(yè)科學(xué)院;2009年
9 郭云雁;豬c-fos和MyoG基因與肌纖維性狀的關(guān)聯(lián)性研究[D];中國農(nóng)業(yè)科學(xué)院;2007年
10 劉銳;LPL作為雞脂肪性狀候選基因分析[D];中國農(nóng)業(yè)大學(xué);2004年
,本文編號(hào):1976875
本文鏈接:http://sikaile.net/yixuelunwen/dongwuyixue/1976875.html