突發(fā)事件下基于SIRS模型的網(wǎng)絡(luò)情感傳播研究
[Abstract]:In recent years, with the rapid development of the Internet, the number of Internet users has become more and more, resulting in a large number of public opinion information flooded in the cyberspace, these public opinion information profoundly affect the psychology and behavior of Internet users. In particular, the frequent occurrence of network emergencies results in people being influenced by the public opinion on the Internet, either positive or negative, which are easily polarized under the influence of network groups. Therefore, if the behavior of individual Internet users is influenced by negative polarization, it will result in serious social consequences. Therefore, it is of great significance for enterprises and governments to grasp the emotional trend of Internet users and adopt corresponding guiding strategies. Based on the SIRS model, this paper analyzes the key influencing factors of emotional communication, taking Wei Zexi's network event in 2016 as an example, collecting relevant data, using Gephi software to generate the propagation network model first, and then using Netlogo software. Python language is used to simulate the model. By combining emotional and central mining indexes, key nodes can be found, and then the selected target immune strategy can be used to immune the model. The specific research contents include the following three aspects: 1. Through expounding the mechanism of information dissemination, analyzing the relationship between information and emotion, eliciting the generation mechanism of emotion and the communication mechanism of emotion, combining the two. This paper adopts the method of graph theory modeling, based on social network, collects some Weibo's data, establishes the transmission network of emotion. 2. Based on the SIRS model, and according to the characteristics of social network, two parameters, birth rate and recovery loss rate, are added. And the stability type of the model is proved by using Lyapunov stability law. By changing the values of each parameter, observing the effect on the proportion of infected people, and finally determining that the immune rate and recovery loss rate are the key factors affecting the number of infected people. 3. According to the conclusion of Chapter 4, We know that immune rate and recovery loss rate are the key factors to affect the effect of emotional transmission. In Chapter 5, we use the corresponding immune strategy to immune nodes in the network, and compare the three immune strategies and one improved immune strategy. The target immunization strategy is the best. Finally, the key nodes are excavated by combining the emotional index with the central index, and the immune effects are compared.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:G206
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 戴杏云;張柳;戴偉輝;朱華;;社交網(wǎng)絡(luò)的情感圖譜研究[J];管理評(píng)論;2016年08期
2 李勇;蔡夢(mèng)思;鄒凱;李黎;;社交網(wǎng)絡(luò)用戶線上線下情感傳播差異及影響因素分析——以“成都女司機(jī)被打”事件為例[J];情報(bào)雜志;2016年06期
3 李春雷;雷少杰;;突發(fā)群體性事件后情緒傳播機(jī)制研究[J];現(xiàn)代傳播(中國(guó)傳媒大學(xué)學(xué)報(bào));2016年06期
4 湯小東;錢(qián)進(jìn);;社交網(wǎng)絡(luò)中基于情感模型的用戶轉(zhuǎn)發(fā)行為預(yù)測(cè)[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2016年05期
5 賴勝?gòu)?qiáng);唐雪梅;;信息情緒性對(duì)網(wǎng)絡(luò)謠言傳播的影響研究[J];情報(bào)雜志;2016年01期
6 趙衛(wèi)東;趙旭東;戴偉輝;戴永輝;胡虹智;;突發(fā)事件的網(wǎng)絡(luò)情緒傳播機(jī)制及仿真研究[J];系統(tǒng)工程理論與實(shí)踐;2015年10期
7 紀(jì)雪梅;王芳;;SNA視角下的在線社交網(wǎng)絡(luò)情感傳播研究綜述[J];情報(bào)理論與實(shí)踐;2015年07期
8 何天翔;張暉;李波;楊春明;趙旭劍;;一種基于情感分析的網(wǎng)絡(luò)輿情演化分析方法[J];軟件導(dǎo)刊;2015年05期
9 王晰巍;邢云菲;趙丹;李嘉興;;基于社會(huì)網(wǎng)絡(luò)分析的移動(dòng)環(huán)境下網(wǎng)絡(luò)輿情信息傳播研究——以新浪微博“霧霾”話題為例[J];圖書(shū)情報(bào)工作;2015年07期
10 沈乾;黃遠(yuǎn);馬寧;劉怡君;;復(fù)雜網(wǎng)絡(luò)演化中的“熵減點(diǎn)”研究:以微博傳播網(wǎng)絡(luò)的演化為例[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2015年03期
相關(guān)博士學(xué)位論文 前2條
1 杜占瑋;個(gè)體的情感和傳染病傳播理論研究[D];吉林大學(xué);2015年
2 胡慶成;基于復(fù)雜網(wǎng)絡(luò)的信息傳播模型研究[D];清華大學(xué);2015年
相關(guān)碩士學(xué)位論文 前9條
1 劉瑩瑩;基于傳染病模型的情緒傳播機(jī)制與影響因素的研究[D];江蘇大學(xué);2016年
2 劉倩倩;微博在線社交網(wǎng)絡(luò)的病毒傳播研究[D];蘭州交通大學(xué);2015年
3 黃格;復(fù)雜社會(huì)網(wǎng)絡(luò)中輿情傳播模型及影響因素分析[D];湘潭大學(xué);2015年
4 王淑嫻;基于隔離策略的復(fù)雜網(wǎng)絡(luò)病毒傳播模型研究[D];山東師范大學(xué);2015年
5 張沙沙;非常規(guī)突發(fā)事件情景下民眾恐慌情緒的影響因素研究[D];燕山大學(xué);2015年
6 鄭愛(ài)國(guó);基于復(fù)雜傳染機(jī)制的在線社會(huì)網(wǎng)絡(luò)信息傳播模型研究[D];大連理工大學(xué);2015年
7 王小偉;基于動(dòng)態(tài)復(fù)雜網(wǎng)絡(luò)的病毒傳播模擬及控制策略研究[D];華南理工大學(xué);2015年
8 吳騰飛;基于復(fù)雜網(wǎng)絡(luò)理論的微博傳播動(dòng)力學(xué)研究[D];杭州電子科技大學(xué);2015年
9 張榮華;論網(wǎng)絡(luò)突發(fā)事件的成因與應(yīng)對(duì)策略[D];北京郵電大學(xué);2011年
,本文編號(hào):2402950
本文鏈接:http://sikaile.net/xinwenchuanbolunwen/2402950.html