隨機森林算法在高分辨遙感影像土地覆被分類中的實現(xiàn)和應用
[Abstract]:The study of land cover change has become the core and hotspot of global change and modern geoscience. In the study of land cover change, land cover classification is the most basic and key link. Land cover classification needs powerful classification method. Stochastic forest is a powerful machine learning classifier, which is an integrated learning method based on non-parametric regression algorithm compared with traditional decision tree. At present, with the launch of many high-resolution satellites one after another, the large amount of high-resolution images, the reduction of mixed pixels and the increase of ground object information, however, the improvement of spatial resolution does not improve the classification accuracy. There will be a reduction in classification accuracy. The traditional methods based on pixel spectral information classification can not meet the requirements of production when they are applied to the classification of high-score images. The increase of ground object information is reflected in the fact that the texture structure of the ground object becomes very clear with the improvement of spatial resolution. It is very important to extract stable and discriminative texture features to improve the classification accuracy of the image. In this paper, two villages and towns in Shitai County were selected as data sources. The spatial heterogeneity of landscape in the study area is high, the area of shadow coverage is large, and the color separability of some categories in the field survey is not strong. Therefore, in this study, the geostatistics method, which has been widely used in the texture extraction of remote sensing images, is used to extract the texture features, the vegetation index is extracted by the Band Math operation of the original wave band, and the importance of the feature is screened by the random forest calculation. The relationship between the number of changing trees, the combination of features and the classification accuracy is tested and compared with the results of maximum likelihood method. The results show that: (1) the generalization error of random forest converges to the fixed value with the increase of the number of trees (N), the classification accuracy increases with the increase of N value, and the computer operation efficiency decreases. In this study, the final selection of NX500 can not only meet the classification accuracy but also ensure the operational efficiency. (2) applying the random forest and maximum likelihood method to evaluate the classification accuracy of texture feature combination, the Kappa coefficients are 0.7134 and 0.6315 respectively, which is higher than that of adding planting. By exponential feature combination and combination of texture and vegetation index features. The classification accuracy of the stochastic forest algorithm is obviously higher than that of the maximum likelihood method. In addition, texture information can improve the classification accuracy to a certain extent. It provides an effective basis for the differentiation of different ground types with close spectral values. The stochastic forest algorithm has a better comprehensive performance. It can also guarantee the efficiency of the operation and is more suitable for practical production and application under the premise of ensuring the classification accuracy. It has certain application value. At the same time, the operation is convenient, the number of the required features and the required features can be calculated by the computer, and the N value that meets the classification accuracy can also be predicted. The maximum likelihood method is not complicated, but the precision is relatively low.
【學位授予單位】:安徽農(nóng)業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:S771.8
【相似文獻】
相關期刊論文 前10條
1 張雷;王琳琳;張旭東;劉世榮;孫鵬森;王同立;;隨機森林算法基本思想及其在生態(tài)學中的應用——以云南松分布模擬為例[J];生態(tài)學報;2014年03期
2 李旭青;劉湘南;劉美玲;吳伶;;水稻冠層氮素含量光譜反演的隨機森林算法及區(qū)域應用[J];遙感學報;2014年04期
3 王盼;陸寶宏;張瀚文;張巍;孫銀鳳;季妤;;基于隨機森林模型的需水預測模型及其應用[J];水資源保護;2014年01期
4 王棟;岳彩榮;田傳召;范懷剛;王躍輝;;基于隨機森林的大姚縣TM遙感影像分類研究[J];林業(yè)調(diào)查規(guī)劃;2014年02期
5 劉毅;杜培軍;鄭輝;夏俊士;柳思聰;;基于隨機森林的國產(chǎn)小衛(wèi)星遙感影像分類研究[J];測繪科學;2012年04期
6 呂淑婷;張啟敏;;一類帶Poisson跳的隨機森林發(fā)展系統(tǒng)數(shù)值解的收斂性[J];寧夏大學學報(自然科學版);2010年04期
7 李治;楊曉梅;孟樊;范文義;;物候特征輔助下的隨機森林宏觀尺度土地覆蓋分類方法研究[J];遙感信息;2013年06期
8 金宇;周可新;方穎;劉欣;;基于隨機森林模型預估氣候變化對動物物種潛在生境的影響[J];生態(tài)與農(nóng)村環(huán)境學報;2014年04期
9 馬明;岳彩榮;張云飛;李小婷;張博;;基于TM影像的土地覆蓋分類比較研究[J];綠色科技;2014年03期
10 ;[J];;年期
相關會議論文 前7條
1 謝程利;王金橋;盧漢清;;核森林及其在目標檢測中的應用[A];第六屆和諧人機環(huán)境聯(lián)合學術(shù)會議(HHME2010)、第19屆全國多媒體學術(shù)會議(NCMT2010)、第6屆全國人機交互學術(shù)會議(CHCI2010)、第5屆全國普適計算學術(shù)會議(PCC2010)論文集[C];2010年
2 武曉巖;方慶偉;;基因表達數(shù)據(jù)分析的隨機森林方法及算法改進[A];黑龍江省第十次統(tǒng)計科學討論會論文集[C];2008年
3 張?zhí)忑?梁龍;王康;李華;;隨機森林結(jié)合激光誘導擊穿光譜技術(shù)用于的鋼鐵分類[A];中國化學會第29屆學術(shù)年會摘要集——第19分會:化學信息學與化學計量學[C];2014年
4 相玉紅;張卓勇;;組蛋白去乙;敢种苿┑臉(gòu)效關系研究[A];第十一屆全國計算(機)化學學術(shù)會議論文摘要集[C];2011年
5 張濤;李貞子;武曉巖;李康;;隨機森林回歸分析方法及在代謝組學中的應用[A];2011年中國衛(wèi)生統(tǒng)計學年會會議論文集[C];2011年
6 馮飛翔;馮輔周;江鵬程;劉菁;劉建敏;;隨機森林和k-近鄰法在某型坦克變速箱狀態(tài)識別中的應用[A];第八屆全國轉(zhuǎn)子動力學學術(shù)討論會論文集[C];2008年
7 曹東升;許青松;梁逸曾;陳憲;李洪東;;組合樹的集合體和后向消除策略去分類P-糖蛋白化合物[A];第十屆全國計算(機)化學學術(shù)會議論文摘要集[C];2009年
相關博士學位論文 前4條
1 曹正鳳;隨機森林算法優(yōu)化研究[D];首都經(jīng)濟貿(mào)易大學;2014年
2 雷震;隨機森林及其在遙感影像處理中應用研究[D];上海交通大學;2012年
3 岳明;基于隨機森林和規(guī)則集成法的酒類市場預測與發(fā)展戰(zhàn)略[D];天津大學;2008年
4 李書艷;單點氨基酸多態(tài)性與疾病相關關系的預測及其機制研究[D];蘭州大學;2010年
相關碩士學位論文 前10條
1 錢維;藥品不良反應監(jiān)測中隨機森林方法的建立與實現(xiàn)[D];第二軍醫(yī)大學;2012年
2 賀捷;隨機森林在文本分類中的應用[D];華南理工大學;2015年
3 張文婷;交通環(huán)境下基于改進霍夫森林的目標檢測與跟蹤[D];華南理工大學;2015年
4 李強;基于多視角特征融合與隨機森林的蛋白質(zhì)結(jié)晶預測[D];南京理工大學;2015年
5 朱玟謙;一種收斂性隨機森林在人臉檢測中的應用研究[D];武漢理工大學;2015年
6 肖宇;基于序列圖像的手勢檢測與識別算法研究[D];電子科技大學;2014年
7 李慧;一種改進的隨機森林并行分類方法在運營商大數(shù)據(jù)的應用[D];電子科技大學;2015年
8 趙亞紅;面向多類標分類的隨機森林算法研究[D];哈爾濱工業(yè)大學;2014年
9 黎成;基于隨機森林和ReliefF的致病SNP識別方法[D];西安電子科技大學;2014年
10 丁然;基于隨機森林大豆籽粒外觀品質(zhì)識別系統(tǒng)的設計與實現(xiàn)[D];東北農(nóng)業(yè)大學;2015年
,本文編號:2288566
本文鏈接:http://sikaile.net/wenyilunwen/huanjingshejilunwen/2288566.html