剪紙紋樣識別算法研究
[Abstract]:The application of image recognition technology is very extensive, and it is one of the hotspots of current research. Many experts and scholars have done research in this field and have made some good achievements. Paper-cut is one of the traditional folk arts with a long history in China. With the development of animation industry, paper-cut is a good material for animation. It will be a very meaningful work to combine the paper-cut art with the image recognition to study the computer paper-cut.
Feature extraction is the key to determining similarity and recognizing an image.How to extract the essential and invariant effective features of an image is the core content of the research.In this paper,the research status of various feature extraction and recognition methods for image recognition at home and abroad is deeply studied,and some comparisons are put forward for deformed image recognition based on non-mathematical transformation. For the sake of effective method, it can extract the effective features without translation, rotation, scale change and small deformation, and is applied to the recognition of the artistic image of paper-cut pattern. The experiment proves that the method has a good effect.
The work of this paper is mainly from the following aspects:
(1) Studying the characteristics of the paper-cut image, summarizing and classifying the pattern of paper-cut. Using the general image pretreatment technology, the paper-cut image can be processed by background denoising, graying and binary processing, which can effectively remove the background noise of the paper-cut image, highlight the pattern and prepare for the follow-up pattern recognition.
(2) A new feature extraction algorithm based on R-transform and singular value decomposition is proposed in this paper. Based on radon transform, a simpler method is proposed to extract image features. The features extracted by this method are invariant in translation, rotation and scale, and have certain robustness. It represents the structural features of the image and can be better. Recognition of certain deformation paper cut patterns.
(3) To overcome the disadvantage that the features extracted by existing methods are not suitable for deformed images, a paper-cut pattern recognition method is proposed. Fourier-Mellin transform is used to obtain the eigenvalues of different subbands of the target by calculating the variance and mean of each layer of the feature without geometric transformation. Translation, rotation and scale invariance, and suitable for recognition of deformed patterns.
(4) Studying all kinds of image recognition methods, using the support vector machine with better classification performance and generalization ability as the classifier of pattern recognition can effectively recognize and classify the pattern.
The paper-cut images used in the experiment are all obtained by scanning paper-cut related books. The algorithm in the paper is theoretically analyzed and verified by experiments. The results show that:
(1) Based on R-transform and singular value decomposition, the method is simple in calculation, robust in feature extraction, invariant in translation, rotation and scale, and can distinguish most deformed images.
(2) Multi-resolution FM transform algorithm is not affected by geometric transformation, and can effectively recognize and classify paper-cut patterns with good robustness.
(3) Support Vector Machine (SVM) is used as classifier, which has good generalization ability and can effectively separate exaggerated and deformed patterns.
Starting from practical problems, this paper deeply studies the pretreatment, feature extraction and recognition methods of paper-cut pattern images, and puts forward some effective methods of feature extraction and recognition for non-strictly mathematically deformed images. It can recognize certain deformed images, which broadens the method of image recognition in theory. It provides a new method for the design and Realization of computer paper-cut art by combining the paper-cut art to study pattern recognition.
【學位授予單位】:廣西師范大學
【學位級別】:碩士
【學位授予年份】:2008
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 毛頓;;高速公路ETC電子收費系統(tǒng)的技術(shù)研究[J];數(shù)字技術(shù)與應用;2011年06期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會議論文 前10條
1 熱合木江;古麗·吐爾遜;馬玉書;;訓練前向神經(jīng)網(wǎng)絡的一種有效算法[A];西部開發(fā)與系統(tǒng)工程——中國系統(tǒng)工程學會第12屆年會論文集[C];2002年
2 范自柱;;基于曲面插值的圖像識別技術(shù)[A];通信理論與信號處理新進展——2005年通信理論與信號處理年會論文集[C];2005年
3 呂同玲;任洪娥;馬巖;;長條薄片刨花視頻檢測方法的探討[A];黑龍江省計算機學會2007年學術(shù)交流年會論文集[C];2007年
4 張琦;方應謙;;淺談基于神經(jīng)網(wǎng)絡的圖象識別[A];2001年中國智能自動化會議論文集(上冊)[C];2001年
5 聶振鋼;張曉林;李宏偉;陸國雷;;具有視覺導航和目標識別的小型多功能無人駕駛直升機[A];2005年中國智能自動化會議論文集[C];2005年
6 李宇成;王目樹;陰亮;賈雁;;基于視頻圖像的車輛外形參數(shù)測量[A];中國計量協(xié)會冶金分會2008年會論文集[C];2008年
7 李宇成;王目樹;陰亮;賈雁;;基于視頻圖像的車輛外形參數(shù)測量[A];2008全國第十三屆自動化應用技術(shù)學術(shù)交流會論文集[C];2008年
8 苑瑋琦;王建軍;張宏勛;;一種新的預加水成球控制方法[A];1997中國控制與決策學術(shù)年會論文集[C];1997年
9 王新紅;錢建生;劉富強;粟君;;用圖象處理的方法監(jiān)測原煤塊率的研究[A];中國圖象圖形科學技術(shù)新進展——第九屆全國圖象圖形科技大會論文集[C];1998年
10 裴海龍;羅沛;李志鵬;龍騰;;基于視覺導航的自主飛行機器人系統(tǒng)原理及實現(xiàn)[A];2005年中國智能自動化會議論文集[C];2005年
相關(guān)重要報紙文章 前4條
1 周薇;觀眾青睞太平洋克羅斯羅爾新設備[N];中國紡織報;2007年
2 本報記者 谷秀軍;首都機場海關(guān)旅檢處——一絲不茍的國門衛(wèi)士[N];金融時報;2004年
3 記者 全鑫 高開升;創(chuàng)造性構(gòu)思:自主創(chuàng)新的源泉[N];鞍山日報 ;2006年
4 ;臉是你的“金鑰匙”[N];中國高新技術(shù)產(chǎn)業(yè)導報;2001年
相關(guān)博士學位論文 前7條
1 黃山;車牌識別技術(shù)的研究和實現(xiàn)[D];四川大學;2005年
2 李智慧;基于可視化的三維放射治療計算機模擬系統(tǒng)的研究[D];四川大學;2002年
3 周日貴;量子神經(jīng)網(wǎng)絡模型研究[D];南京航空航天大學;2008年
4 李劍;局部放電灰度圖象識別特征提取與分形壓縮方法的研究[D];重慶大學;2001年
5 畢曉君;基于智能信息技術(shù)的紋理圖象識別與生成研究[D];哈爾濱工程大學;2006年
6 陳才扣;基于核的非線性特征抽取與圖象識別研究[D];南京理工大學;2004年
7 高建新;數(shù)字散斑相關(guān)方法及其在力學測量中的應用[D];清華大學;1989年
相關(guān)碩士學位論文 前10條
1 韋月瓊;剪紙紋樣識別算法研究[D];廣西師范大學;2008年
2 胡志群;改善的EVAD技術(shù)與圖象識別法提取平均散度[D];南京信息工程大學;2005年
3 張建波;射擊運動自動報靶系統(tǒng)中的圖象識別判靶算法研究[D];西安電子科技大學;2001年
4 李國祥;剪紙紋樣的特征提取和識別算法研究[D];廣西師范大學;2010年
5 曹愛飛;基于電力設備的熱圖像處理與分析[D];安徽大學;2007年
6 李余慶;基于語音識別的輪椅機器人無線監(jiān)控系統(tǒng)的研究[D];南昌大學;2009年
7 曹昊;基于自適應支持向量機算法的應用研究[D];中國地質(zhì)大學(北京);2008年
8 李源;聯(lián)合變換相關(guān)器在圖象識別上的研究[D];電子科技大學;2001年
9 呂強;基于邊界矩的模糊神經(jīng)網(wǎng)絡圖象識別[D];哈爾濱工程大學;2006年
10 蘇振文;基于ARM的移動機器人導航?jīng)Q策系統(tǒng)研究[D];廣東工業(yè)大學;2008年
,本文編號:2227620
本文鏈接:http://sikaile.net/wenyilunwen/dongmansheji/2227620.html