機(jī)器人輔助針穿刺技術(shù)
全文:
(1092 KB)
(0 KB)
輸出: BibTeX | EndNote (RIS)
背景資料
摘要
機(jī)器人輔助技術(shù)一直是現(xiàn)代外科醫(yī)學(xué)的重要研究課題. 研究機(jī)器人輔助針穿刺技術(shù)不僅有重要的理論意義,而且在臨床上可以有效地提高針穿刺的操作精度和手術(shù)質(zhì)量,因而在微創(chuàng)外科領(lǐng)域具有廣泛的應(yīng)用價值. 本文以剛性針和柔性針為貫穿線索,對已有機(jī)器人穿刺系統(tǒng)進(jìn)行了簡要介紹,并針對建模、規(guī)劃、導(dǎo)航與控制等關(guān)鍵技術(shù)進(jìn)行分析,,較系統(tǒng)地介紹了機(jī)器人輔助針穿刺技術(shù)領(lǐng)域的研究現(xiàn)狀,最后闡述了該領(lǐng)域面臨的挑戰(zhàn)性問題及未來發(fā)展趨勢.
服務(wù)
E-mail Alert
RSS
收稿日期: 2013-08-20
基金資助:
國家自然科學(xué)基金(61273356,61273355)資助
通訊作者: 韓建達(dá) E-mail: jdhan@sia.cn
引用本文:
趙新剛, 楊唐文, 韓建達(dá), 徐衛(wèi)良. 機(jī)器人輔助針穿刺技術(shù). 科學(xué)通報, 2013, 58(): 20-27.
ZHAO XinGang, YANG TangWen, HAN JianDa, XU WeiLiang. A review on the robot-assisted needle puncture technology. Chinese Science Bulletin, 2013, 58(): 20-27.
鏈接本文:
:8080/CN/10.1360/972013-952 或 :8080/CN/Y2013/V58/I/20
1 Cleary K, Clifford M, Stoianovici D, et al. Technology improvements for image-guided and minimally invasive spine procedures. IEEE Trans Inf Technol Biomed, 2002, 6: 249-261 2 丑武勝, 王田苗. 面向腦外科微創(chuàng)手術(shù)的醫(yī)療機(jī)器人系統(tǒng). 機(jī)器人技術(shù)與應(yīng)用, 2003, 4: 18-21 3 Sun Y S, Wu D, Du Z, et al. Force-driven robotic drag control for freehand 3d ultrasound-guided robot-assisted percutaneous surgery. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, 2009. 1953-1956 4 Okamura A M, Simone C, O'Leary M D. Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng, 2004, 51: 1707-1716 5 Simone C, Okamura A M. Modeling of needle insertion forces for robot-assisted percutaneous therapy. In: Proceedings of IEEE International Conference on Robotics and Automation, Washington DC, 2002. 2085-2091 6 Misra S, Reed K B, Schafer B W, et al. Mechanics of flexible needles robotically steered through soft tissue. Int J Robot Res, 2010, 29: 1640-1660 7 Webster R J, Memisevic J, Okamura A M. Design considerations for robotic needle steering. In: Proceedings of International Conference on Robotics and Automation, Barcelona, 2005. 3588-3594 8 Abolhassani N, Patel R V, Ayazi F. Minimization of needle deflection in robot assisted percutaneous therapy. Int J Med Robotics Comput Assist Surg, 2007, 3: 140-148 9 Neubach Z, Shoham M. Ultrasound-guided robot for flexible needle steering. IEEE Trans Biomed Eng, 2010, 57: 799-805 10 Stoianovici D, Cleary K, Patriciu A, et al. AcuBot: A robot for radiological interventions. IEEE Trans Rob Autom, 2003, 19: 927-930 11 Bassan H S, Patel R V, Moallem M. A novel manipulator for percutaneous needle insertion: Design and experimentation. IEEE/ASME Trans Mech, 2009, 14: 746-761 12 Glozman D, Shoham M. Image-guided robotic flexible needle steering. IEEE Trans Robot, 2007, 23: 459-467 13 Majewicz A, Marra S, van Vledder M, et al. Behavior of tip-steerable needlesin ex vivo and in vivo tissue. IEEE Trans Biomed Eng, 2012, 59: 2705-2715 14 Asadian A, Patel R V, Kermani M R. A distributed model for needle-tissue friction in percutaneous interventions. In: Proceedings of International Conference on Robotics and Automation, Shanghai, 2011. 1896-1901 15 Barbe L, Bayle B, De Mathelin M, et al. Needle insertion modeling: Identifiability and limitations. Biomed Signal Proces, 2007, 2: 191-198 16 DiMaio S P, Salcudean S E. Needle insertion modeling and simulation. IEEE Trans Rob Autom, 2003, 19: 864-875 17 Nightingale K R, Soo M S, Nighting R W, et al. Investigation of real-time remote palpation imaging. In: Proceedings of SPIE Conference on Medical Imaging, 2001. 224-229 18 Ottensmeyer M P. TeMPeST 1-D: An instrument for measuring solid organ soft tissue properties. Exp Tech, 2002, 26: 48-50 19 Cotin S. Surgical simulation and training: The state of the art and need for tissue models. In: Proceedings of IEEE Workshop on Intelligent Robotics and Systems, 2003 20 DiMaio S P, Salcudean S E. Interactive simulation of needle insertion models. IEEE Trans Biomed Eng, 2005, 52: 1167-1179 21 Nienhuys H W, van der Stappen A F. A computational technique for interactive needle insertions in 3D nonlinear material. In: Proceedings of International Conference on Robotics and Automation, New Orleans, 2004. 2061-2067 22 Goksel O, Salcudean S E, DiMaio S P, et al. 3D needle-tissue interaction simulation for prostate brachytherapy. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, 2005. 827-834 23 Chentanez N, Alterovitz R, Ritchie D, et al. Interactive simulation of surgical needle insertion and steering. In: Proceedings of ACM Annual Conference on Computer Graphics, 2009. 28: 1-10 24 Tanaka N, Higashimori M, Kaneko M, et al. Noncontact active sensing for viscoelastic parameters of tissue with coupling effect. IEEE Trans Biomed Eng, 2011, 58: 509-520 25 Goksel O, Geghhan E, Salcudean S E. Modeling and simulation of flexible needles. Med Eng Phys, 2009, 31: 1069-1078 26 Yan K G, Podder T, Yu Y, et al. Flexible needle-tissue interaction modeling with depth-varing mean parameter: Preliminary study. IEEE Trans Biomed Eng, 2009, 56: 255-262 27 鄭浩峻, 姚望, 高德東, 等. 機(jī)器人輔助柔性針穿刺路徑的懸臂梁預(yù)測模型. 清華大學(xué)學(xué)報, 2011, 51: 1078-1083 28 Glozman D, Shoham M. Flexible needle steering for percutaneous therapies. Comput Aided Surg, 2006, 11: 194-201 29 高德東, 鄭浩峻, 姚望, 等. 基于虛擬彈簧模型的柔性針穿刺仿真研究. 計算機(jī)工程, 2010, 36: 273-278 30 Webster R J, Kim J S, Cowan N J, et al. Nonholonomic modeling of needle steering. Int J Robot Res, 2006, 25: 509-525 31 Zhang Y D, Zhao Y J. Kinematic modeling of bevel tip flexible needle. In: Proceedings of International Conference on Intelligent Robotics and Applications, Shanghai, 2010. 405-416 32 Reed K B. Compensating for torsion windup in steerable needles. In: Proceedings of Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, 2008. 936-941 33 Reed K B, Okamura A M, Cowan N J. Modeling and control of needles with torsional friction. IEEE Trans Biomed Eng, 2009, 56: 2905-2916 34 張永德, 趙燕江, 涂飛, 等. 柔性針穿刺路徑規(guī)劃綜述. 哈爾濱理工大學(xué)學(xué)報, 2011, 16: 7-11 35 Abolhassani N, Patel R V, Moallem M. Trajectory generation for robotic needle insertion in soft tissue. In: Proceedings of IEEE EMBS Annual International Conference, San Francisco, 2004. 2730-2733 36 DiMaio S P, Salcudean S E. Needle steering and motion planning in soft tissue. IEEE Trans Biomed Eng, 2005, 52: 965-974 37 Glozman D, Shoham M. Flexible needle steering and optimal trajectory planning for percutaneous therapies. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, 2004. 137-144 38 Alterovitz R, Goldberg K, Okamura A. Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In: Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, 2005. 1640-1645 39 Minha D S, Engh J A, Riviere C N. Testing of neurosurgical needle steering via duty-cycled spinning in brain tissue in vitro. In: Proceedings of IEEE EMBS Annual International Conference, Minneapolis, 2009. 258-261 40 Alterovitz R, Branicky M, Goldberg K. Motion planning under uncertainty for image-guided medical needle steering. Int J Robot Res, 2008, 27: 1361-1374 41 Alterovitz R, Branicky M, Goldberg K. Algorithmic Foundation of Robotics Ⅷ: Constant-curvature motion planning under uncertainty with applications in image-guided medical needle steering. Berlin: Springer-Verlag, 2008 42 Asadian A, Kermani M R, Patel R V. Accelerated needle steering using partitioned value iteration. In: Proceedings of American Control Conference, Baltimore, 2010. 2785-2790 43 張永德, 趙燕江, 陳浩. 斜尖柔性針在軟組織中的二維路徑規(guī)劃. 機(jī)器人, 2011, 22: 750-757 44 Park W, Liu Y, Zhou Y, et al. Kinematic state estimation and motion planning for stochastic nonholonomic system using the exponential map. Robotica, 2008, 26: 419-434 45 Park W, Wang Y, Chirikjian G S. The path-of-probability algorithm for steering and feedback control of flexible needles. Int J Robot Res, 2010, 29: 813-830 46 Duindam V, Alterovitz R, Sastry S, et al. Screw-based motion planning for bevel-tip flexible needles in 3D environments with obstacles. In: Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, 2008. 2483-2488 47 Duindam V, Xu J, Alterovitz R, et al. Three-dimensional motion planning algorithms for steerable needles using inverse kinematics. Int J Robot Res, 2010, 29: 789-800 48 Xu J, Duindam V, Alterovitz R, et al. Motion planning for steerable needles in 3D environments with obstacles using rapidly-exploring random trees and back chaining. In: Proceedings of IEEE International Conference on Automation Science and Engineering, Washington DC, 2008. 41-46 49 Hing J T, Brooks A D, DeSai J P. A biplannar fluoroscopic approach for the measurement, modeling, and simulation of needle and soft-tissue interaction. Med Image Anal, 2007, 11: 62-78 50 Fichtinger G, Deguet A, Masamune K, et al. Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng, 2005, 52: 1415-1424 51 Krieger A, Susil R C, Ménard C, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng, 2005, 52: 306-313 52 Krieger A, Song S E, Whitcomb L L, et al. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans Mech, 2013, 18: 273-284 53 Tadayyon H, Lasso A, Kaushal A, et al. Target motion tracking in MRI-guided transrectal robotic prostate biopsy. IEEE Trans Biomed Eng, 2011, 58: 3135-3142 54 Aboofazeli M, Abolmaesumi P, Mousavi P, et al. A new scheme for curved needle segmentation in three-dimensional ultrasound images. In: Proceedings of IEEE International Symposium on Biomedical Imaging, Boston, 2009. 1067-1070 55 Zhu M C, Salcudean S E. Real-time image-based b-mode ultrasound image simulation of needles using tensor-product interpolation. IEEE Trans Med Imaging, 2011, 30: 1391-1400 56 Boctor E M, Choti M A, Burdette E C, et al. Three-dimensional ultrasound-guided robotic needle placement: An experimental evaluation. Int J Med Robotics Comput Assist Surg, 2008, 4: 180-191 57 Kallem V, Cowan N J. Image guidance of flexible tip-steerable needles. IEEE Trans Robot, 2009, 25: 191-196 58 Haddadi A, Hashtrudi-Zaad K. Development of a dynamic model for bevel-tip flexible needle insertion into soft tissue, In: Proceedings of IEEE EMBS Annual International Conference, Boston, 2011. 7478-7482 59 Romano J M, Webster R J, Okamura A M. Teleoperation of steerable needles. In: Proceedings of IEEE International Conference on Robotics and Automation, Roma, 2007. 934-939 60 Duchemin G, Maillet P, Poignet P, et al. A hybrid position/force control approach for identification of deformation models of skin and underlying tissues. IEEE Trans Biomed Eng, 2005, 52: 160-170 61 Reed K B, Kallem V, Alterovitz R, et al. Integrated planning and image-guided control for planar needle steering. In: Proceedings of Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, USA, 2008. 819-824
[1] 解永春, 張昊, 胡軍, 胡海霞. 神舟飛船交會對接自動控制系統(tǒng)設(shè)計[J]. 中國科學(xué) 技術(shù)科學(xué), 2014, 44(1): 12-19.
本文編號:31806
本文鏈接:http://sikaile.net/wenshubaike/xxkj/31806.html