復(fù)雜工業(yè)過程運(yùn)行優(yōu)化與反饋控制
本文關(guān)鍵詞:復(fù)雜工業(yè)過程運(yùn)行優(yōu)化與反饋控制,由筆耕文化傳播整理發(fā)布。
全文:
(3078 KB)
(1 KB)
輸出: BibTeX | EndNote (RIS)
摘要 過程控制不僅使被控對象的輸出盡可能好地跟蹤控制器設(shè)定值, 而且要對整個工業(yè)裝置的運(yùn)行進(jìn)行控制, 使反映產(chǎn)品在該裝置加工過程中質(zhì)量、效率與消耗等指標(biāo), 即運(yùn)行指標(biāo)在目標(biāo)值范圍內(nèi), 盡可能提高質(zhì)量與效率指標(biāo), 盡可能降低消耗指標(biāo), 即實(shí)現(xiàn)工業(yè)過程運(yùn)行優(yōu)化控制. 本文在綜述了已有的運(yùn)行優(yōu)化與控制方法的基礎(chǔ)上, 重點(diǎn)介紹了復(fù)雜工業(yè)過程的數(shù)據(jù)驅(qū)動的混合智能運(yùn)行優(yōu)化控制和運(yùn)行控制半實(shí)物仿真系統(tǒng), 并以赤鐵礦磨礦過程為應(yīng)用研究案例, 仿真實(shí)驗(yàn)和工業(yè)應(yīng)用結(jié)果表明所提方法的有效性, 并指出了復(fù)雜工業(yè)過程運(yùn)行優(yōu)化控制研究需要關(guān)注的問題.
服務(wù)
E-mail Alert
RSS
收稿日期: 2013-07-19
基金資助:國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(2009CB320601)資助
作者簡介: 柴天佑 中國工程院院士, 東北大學(xué)教授, IEEE Fellow, IFAC Fellow. 1985 年獲得東北大學(xué)博士學(xué)位. 主要研究方向?yàn)樽赃m應(yīng)控制, 智能解耦控制, 流程工業(yè)綜臺自動化理論、方法與技術(shù).
引用本文:
柴天佑. 復(fù)雜工業(yè)過程運(yùn)行優(yōu)化與反饋控制. 自動化學(xué)報, 2013, 39(11): 1744-1757.
CHAI Tian-You. Operational Optimization and Feedback Control for Complex Industrial Processes. Acta Automatica Sinica, 2013, 39(11): 1744-1757.
鏈接本文:
或
[1] Engell S. Feedback control for optimal process operation. Journal of Process Control, 2007, 17(3): 203-219
[2] Darby M L, Nikolaou M, Jones J, Nicholson D. RTO: an overview and assessment of current practice. Journal of Process Control, 2011, 21(6): 874-884
[3] Scattolini R. Architectures for distributed and hierarchical model predictive control——a review. Journal of Process Control, 2009, 19(5): 723-731
[4] Mercangöz M, Doyle F J III. Real-time optimization of the pulp mill benchmark problem. Computers and Chemical Engineering, 2008, 32(4-5): 789-804
[5] Hasikos J, Sarimveis H, Zervas P L, Markatos N C. Operational optimization and real-time control of fuel-cell systems. Journal of Power Sources, 2009, 193(1): 258-268
[6] Jäschke J, Skogestad S. NCO tracking and self-optimizing control in the context of real-time optimization. Journal of Process Control, 2011, 21(10): 1407-1416
[7] Tatjewski P. Advanced control and on-line process optimization in multilayer structures. Annual Reviews in Control, 2008, 32(1): 71-85
[8] Adetola V, Guay M. Integration of real-time optimization and model predictive control. Journal of Process Control, 2010, 20(2): 125-133
[9] Alvarez L A, Odloak D. Robust integration of real time optimization with linear model predictive control. Computers and Chemical Engineering, 2010, 34(12): 1937-1944
[10] Wu M, Cao W H, He C Y, She J H. Integrated intelligent control of gas mixing-and-pressurization process. IEEE Transactions on Control Systems Technology, 2009, 17(1): 68-77
[11] Bischoff K B, Denn M M, Seinfeld J H, Stephanopoulos G, Chakraborty A, Peppas N, Ying J, Wei J. Advances in Chemical Engineering. vol.26. San Diego: Academic Press, 2001
[12] Skogestad S. Plantwide control: the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5): 487-507
[13] Findeisen W, Bailey F N, Bryds M, Malinawski K, Tatjewski P, Wozniak A. Control and Coordination in Hierarchical Systems. New York: John Wiley, 1980
[14] Marlin T E, Hrymak A N. Real-time operations optimization of continuous processes. In: Proceedings of the 5th International Conference on Chemical Process Control. New York: American Institute of Chemical Engineers, 1997. 156-164
[15] Nath R, Alzein Z. On-line dynamic optimization of olefins plants. Computers & Chemical Engineering, 2000, 24(2-7): 533-538
[16] Hartmann J C M. Distinguish between scheduling and planning models. Hydrocarbon Processing, 1998, 77: 93-100
[17] Bartusiak R D. NLMPC: a platform for optimal control of feed-or product-flexible manufacturing. Assessment and Future Directions of Nonlinear Model Predictive Control Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: Springer, 2007, 358: 367-381
[18] Qin S J, Badgewell T A. A survey of industrial model predictive control technology. Control Engineering Practice, 2003, 11(7): 733-764
[19] Li H X, Guan S P. Hybrid intelligent control strategy. Supervising a DCS-controlled batch process. IEEE Control Systems Magazine, 2001, 21(3): 36-48
[20] Wang Z J, Wu Q D, Chai T Y. Optimal-setting control for complicated industrial processes and its application study. Control Engineering Practice, 2004, 12(1): 65-74
[21] Yang C H, Gui W H, Kong L S, Wang Y L. A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production. Engineering Applications of Artificial Intelligence, 2009, 22(4-5): 786-795
[22] Wu M, Xu C H, She J H, Yokoyama R. Intelligent integrated optimization and control system for lead-zinc sintering process. Control Engineering Practice, 2009, 17(2): 280-290
[23] Zhou P, Chai T Y, Sun J. Intelligence-based supervisory control for optimizing the operation of a DCS-controlled grinding system. IEEE Transactions on Control Systems Technology, 2013, 21(1): 162-175
[24] Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515 (柴天佑, 丁進(jìn)良, 王宏, 蘇春翌. 復(fù)雜工業(yè)過程運(yùn)行的混合智能優(yōu)化控制方法. 自動化學(xué)報, 2008, 34(5): 505-515)
[25] Chai T Y, Liu J X, Ding J L, Su C Y. Hybrid intelligent optimising control for high-intensity magnetic separating process of hematite ore. Measurement and Control, 2007, 40(6): 171-175
[26] Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3): 264-275
[27] Yan A J, Chai T Y, Yue H. Multivariable intelligent optimizing control approach for shaft furnace roasting process. Acta Automatica Sinica, 2006, 32(4): 636-640
[28] Wu F H, Chai T Y. Soft sensing method for magnetic tube recovery ratio via fuzzy systems and neural networks. Neurocomputing, 2010, 73(13-15): 2489-2497
[29] Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730-743
[30] Chai T Y, Wu F H, Ding J L, Su C Y. Intelligent work-situation fault diagnosis and fault-tolerant system for the shaft-furnace roasting process. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2007, 221(16): 843-855
[31] Ding J L, Chai T Y, Wang H. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization. IEEE Transactions on Neural Networks, 2011, 22(3): 408-419
[32] Ding J L, Chai T Y, Wang H, Chen X K. Knowledge-based global operation of mineral processing under uncertainty. IEEE Transactions on Industry Informatics, 2012, 8(4): 849-859
[33] Chai T Y, Zhang Y J, Wang H, Su C Y, Sun J. Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control. IEEE Transactions on Neural Networks, 2011, 22(12): 2154-2172
[34] Liu Q, Chai T Y, Wang H, Qin S Z J. Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes. IEEE Transactions on Neural Networks, 2011, 22(12): 2284-2295
[35] Yu G, Chai T Y, Luo X C. Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing. IEEE Transactions on Evolutionary Computation, 2011, 15(4): 487-514
[36] Chai T Y, Zhao L, Qiu J B, Liu F Z, Fan J L. Integrated network-based model predictive control for setpoints compensation in industrial processes. IEEE Transactions on Industrial Informatics, 2013, 9(1): 417-426
[1] 代偉, 柴天佑. 數(shù)據(jù)驅(qū)動的復(fù)雜磨礦過程運(yùn)行優(yōu)化控制方法. 自動化學(xué)報, 2014, 40(9): 2005-2014.
[2] 柴天佑. 生產(chǎn)制造全流程優(yōu)化控制對控制與優(yōu)化理論方法的挑戰(zhàn). 自動化學(xué)報, 2009, 35(6): 641-649.
[3] 柴天佑, 丁進(jìn)良, 王宏, 蘇春翌. 復(fù)雜工業(yè)過程運(yùn)行的混合智能優(yōu)化控制方法. 自動化學(xué)報, 2008, 34(5): 505-515.
[4] 劉治, 王耀南. 一種高階模糊CMAC自適應(yīng)控制及其應(yīng)用. 自動化學(xué)報, 2001, 27(02): 262-266.
[5] 何敏, 呂勇哉. 基于混合知識表達(dá)模型的啟發(fā)式優(yōu)化控制策略及其應(yīng)用. 自動化學(xué)報, 1992, 18(03): 371-375.
本文關(guān)鍵詞:復(fù)雜工業(yè)過程運(yùn)行優(yōu)化與反饋控制,,由筆耕文化傳播整理發(fā)布。
本文編號:245018
本文鏈接:http://sikaile.net/wenshubaike/xxkj/245018.html