基于網(wǎng)絡(luò)用戶評(píng)論的評(píng)分預(yù)測(cè)模型研究
發(fā)布時(shí)間:2018-04-29 05:08
本文選題:評(píng)分預(yù)測(cè) + 情感分析 ; 參考:《數(shù)據(jù)分析與知識(shí)發(fā)現(xiàn)》2017年08期
【摘要】:【目的】通過(guò)網(wǎng)絡(luò)用戶評(píng)論,為評(píng)論網(wǎng)站構(gòu)建有效的評(píng)分預(yù)測(cè)機(jī)制!痉椒ā刻岢龌诰W(wǎng)絡(luò)用戶評(píng)論的評(píng)分預(yù)測(cè)模型,該模型包括4個(gè)模塊:網(wǎng)絡(luò)用戶評(píng)論獲取模塊、預(yù)測(cè)變量獲取模塊、預(yù)測(cè)分析模塊以及預(yù)測(cè)結(jié)果評(píng)價(jià)模塊。抓取30部不同類型的電影評(píng)論數(shù)據(jù),27部用于構(gòu)建模型,3部用于檢驗(yàn)?zāi)P。【結(jié)果】使用逐步回歸方法篩選出變量:參與評(píng)分人數(shù)、參與評(píng)論人數(shù)、想要觀看人數(shù)和電影正向評(píng)論情感均值,構(gòu)建評(píng)分預(yù)測(cè)模型。使用3部電影驗(yàn)證,預(yù)測(cè)評(píng)分與IMDb評(píng)分相差最大值為0.0644,最小值為0.0227。【局限】在數(shù)據(jù)樣本量、情感特征提取精度、模型普適性驗(yàn)證等方面有待進(jìn)一步提升!窘Y(jié)論】該模型能夠依據(jù)用戶評(píng)論對(duì)評(píng)分進(jìn)行有效預(yù)測(cè),在網(wǎng)絡(luò)水軍探測(cè)方面也能發(fā)揮一定的作用。
[Abstract]:[objective] to construct an effective scoring prediction mechanism for the comment website through the network user comments. [methods] A scoring prediction model based on the network user comment is proposed. The model includes four modules: the network user comment acquisition module. Prediction variable acquisition module, prediction analysis module and prediction evaluation module. Grabbing 30 different types of movie review data, 27 were used to build models and 3 were used to test the models. [results] the variables were screened out using stepwise regression: number of participants, number of comments, In order to evaluate the number of viewers and the emotional average of positive reviews, a rating prediction model was constructed. Using three films to verify, the difference between prediction score and IMDb score is 0.0644, the minimum value is 0.0227.The accuracy of data sample size, emotion feature extraction, [conclusion] the model can effectively predict the score according to the user comments, and it can also play a certain role in the detection of the network navy.
【作者單位】: 中山大學(xué)資訊管理學(xué)院;
【基金】:國(guó)家社會(huì)科學(xué)基金項(xiàng)目“用戶評(píng)論情感分析及其在競(jìng)爭(zhēng)情報(bào)服務(wù)中的應(yīng)用研究”(項(xiàng)目編號(hào):11CTQ022) 廣東省科技專項(xiàng)“基于內(nèi)容的科技文獻(xiàn)分析服務(wù)平臺(tái)”(項(xiàng)目編號(hào):2016B030303003)的研究成果之一
【分類號(hào)】:G252
,
本文編號(hào):1818518
本文鏈接:http://sikaile.net/tushudanganlunwen/1818518.html
最近更新
教材專著