基于機(jī)器視覺(jué)的枸杞外觀品質(zhì)檢測(cè)與評(píng)級(jí)方法研究
[Abstract]:At present, the classification of Lycium barbarum is mainly carried out manually. This classification method is influenced by people's subjective will. It is inaccurate, laborious and inefficient in production. It is not only unable to guarantee the appearance quality of Lycium barbarum. And unable to meet the market variety of demand. Therefore, the surface quality of Lycium barbarum was detected and classified by machine vision technology, and the automatic and nondestructive testing of Lycium barbarum was realized. Aiming at the appearance quality of Lycium barbarum, it mainly involves the size, surface defect and color of Lycium barbarum. The main research contents and results are as follows: (1) aiming at the need of image feature extraction in classification detection of Lycium barbarum, The characteristics of several commonly used color space models are systematically analyzed and expounded. At the same time, the basic algorithms of image grayscale, binarization, image segmentation, image edge detection, image filtering and so on are analyzed and studied. In order to realize the classification of the size of Lycium barbarum, the projection surface area, long axis diameter, short axis diameter, eccentricity rate of Lycium barbarum were obtained by studying the surface area, long axis diameter, short axis diameter and eccentricity of Lycium barbarum. Based on the method and technique of geometric characteristic parameters such as roundness, the correlation model between the measured value and pixel value of the long axis diameter of Lycium barbarum is established. (3) according to the chroma value, the damaged and oil particle regions are identified, and then processed by filtering. According to the ratio of this area to the whole intact wolfberry area, the defect degree is judged, and the surface defect degree of Lycium barbarum is detected and judged. (4) based on HSI color space model, the color characteristic parameters of Lycium barbarum were extracted. This paper classifies Lycium barbarum with the range of chrominance, calculates the mean value, variance of chrominance, saturation and brightness, and judges the accuracy of classification. (5) A set of automatic detection and evaluation system of Lycium barbarum is developed by using Matlab/GUI software platform. The software is designed by modularization, including file module, image acquisition module, image preprocessing module, feature parameter extraction module and classification module. The visual operation is realized, the interface is friendly, the operation is simple and easy to maintain. The experimental results show that the system is fast and accurate in the detection and classification of Lycium barbarum.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:S567.19;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭云發(fā);張立元;詹映;羅華平;;基于Matlab圖像處理技術(shù)對(duì)南疆紅棗缺陷的檢測(cè)[J];伊犁師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年03期
2 彭云發(fā);黃磊;羅華平;;南疆紅棗靜態(tài)圖像采集分級(jí)方法研究[J];農(nóng)機(jī)化研究;2014年03期
3 葛邦國(guó);劉志勇;朱風(fēng)濤;馬超;;枸杞加工研究現(xiàn)狀與前景展望[J];食品研究與開(kāi)發(fā);2014年04期
4 王益民;張珂;許飛華;王玉;任曉衛(wèi);張寶琳;;不同品種枸杞子營(yíng)養(yǎng)成分分析及評(píng)價(jià)[J];食品科學(xué);2014年01期
5 王顥霖;;中醫(yī)藥單復(fù)方消除運(yùn)動(dòng)性疲勞研究進(jìn)展[J];南京體育學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年06期
6 ;枸杞子怎樣食用能長(zhǎng)壽[J];農(nóng)村新技術(shù);2013年07期
7 林楠;楊宗學(xué);藺海明;張巨瓊;;不同產(chǎn)地枸杞質(zhì)量的比較研究[J];甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào);2013年02期
8 段文杰;;枸杞子的藥理作用及價(jià)值[J];黑龍江醫(yī)藥;2013年01期
9 蓋成;張麗娟;范國(guó)強(qiáng);;枸杞子提取物中多糖含量測(cè)定方法研究[J];現(xiàn)代儀器與醫(yī)療;2013年01期
10 趙松柏;諶海云;陳普春;賈鵬;盧阿娟;鄒寧波;鄭琦怡;;基于MATLAB的不規(guī)則面積圖像測(cè)量[J];自動(dòng)化技術(shù)與應(yīng)用;2012年09期
,本文編號(hào):2390256
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2390256.html