水果組織光學(xué)特性參數(shù)反演模型及其應(yīng)用研究
[Abstract]:The optical properties of fruit tissue are important parameters reflecting the chemical composition, physical structure, physiological and pathological state of fruit tissue. The measurement of the optical characteristic parameters of fruit tissue, for studying the imaging law of the inner structure of the tissue and the characteristics of photon transmission, analyzing the histochemical characteristics and physical structure, It is of great significance to establish internal quality (state) detection and evaluation model. In this paper, the transmission of light in single layer fruit tissue is simulated based on MC, and the inverse solution of optical characteristic parameters is realized. Secondly, the hyperspectral scattering images of tissue simulated fluid are collected by hyperspectral scattering imaging system, and the inversion solution of the optical characteristic parameters of tissue simulation fluid is realized by combining with the nonlinear inversion regression model. On the basis of this study, the absorption and scattering of apple tissue were studied, and the prediction model between the spectral characteristics and the hardness and soluble solid content of apple was established. The main work of this paper is as follows: 1. In view of the large errors between the diffuse model and the MC simulation near the light source, an iterative inversion based method for estimating the mean free path of transport and determining the minimum distance between the light source and the detector is proposed. The method adaptively evaluates the mean free path of transport by using iterative estimation idea and changes the minimum distance between light source and detector to obtain a more reasonable data interval for the inversion of optical characteristic parameters. The results show that compared with the traditional empirical estimation method, the iterative inversion method can reduce the near-light source error and improve the retrieval accuracy of the optical characteristic parameters of fruit tissue. Under the condition of no noise, the average relative error of absorption coefficient 渭 _ a inversion is 7.17 and the average relative error of effective scattering coefficient 渭 _ s inversion is 5.73. In the case of certain SNR noise, the iterative inversion method can still obtain higher inversion accuracy of optical characteristic parameters. 2. Due to the various limitations of the optical approximation model, the prediction models of the optical characteristic parameters 渭 _ a and 渭 _ s are established by using the machine learning method. The hyperspectral scattering imaging system based on steady-state spatial resolution technique is used to obtain the scattering images in the 530-900nm band range of tissue simulation fluid. The nonlinear inverse regression model of optical parameters is established by combining Fourier decomposition and least squares support vector machine (LS-SVM) algorithm. The results show that the method of Fourier decomposition and least squares support vector machine based on experimental data can obtain better prediction results. The average relative errors of 渭 _ a and 渭 _ s inversion are 11.03% and 7.16.3 respectively. The (SSC) prediction model of apple hardness and soluble solid content was studied. The online hyperspectral scattering imaging system is used to collect the scattering images of 'Golden Delicious, (GD),' Jonagold, (JG) and 'Delicious' (RD) apple samples in 500-1000nm band range from 2009 to 2010. The hyperspectral scattering images were analyzed and extracted by optical characteristic parameter method, moment method and Fourier decomposition method. The prediction model of apple hardness and SSC was established by combining partial least squares and least squares support vector machine. The results show that the fused spectral features (optical parameters 渭 _ a and 渭 _ s, zero-order moments and first-order moments, Fourier coefficients) can provide more information about the scattering curves than the single spectral features. Thus, the prediction accuracy of apple hardness and SSC is improved.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S66;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁辰;李成海;周來(lái)恩;;PCA-BP神經(jīng)網(wǎng)絡(luò)入侵檢測(cè)方法[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年06期
2 何春柳;朱啟兵;黃敏;;基于矩變換的生物組織光學(xué)特性參量反演[J];光子學(xué)報(bào);2015年02期
3 孫梅;陳興海;張恒;陳海霞;;高光譜成像技術(shù)的蘋果品質(zhì)無(wú)損檢測(cè)[J];紅外與激光工程;2014年04期
4 張令標(biāo);何建國(guó);劉貴珊;王松磊;賀曉光;王偉;;基于可見/近紅外高光譜成像技術(shù)的番茄表面農(nóng)藥殘留無(wú)損檢測(cè)[J];食品與機(jī)械;2014年01期
5 吳龍國(guó);何建國(guó);劉貴珊;賀曉光;王偉;王松磊;李丹;;基于近紅外高光譜成像技術(shù)的長(zhǎng)棗含水量無(wú)損檢測(cè)[J];光電子.激光;2014年01期
6 章海亮;高俊峰;何勇;;基于高光譜成像技術(shù)的柑橘缺陷無(wú)損檢測(cè)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2013年09期
7 彭勇;陳俞強(qiáng);嚴(yán)文杰;;基于改進(jìn)BP網(wǎng)絡(luò)模型的公路流量預(yù)測(cè)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2012年08期
8 張小娟;周青軍;楊薇;;光源附近空間分辨漫反射的SP_3研究[J];物理學(xué)報(bào);2012年03期
9 陳榮;陳韶華;劉江海;;強(qiáng)散射生物組織光學(xué)特性參數(shù)的重構(gòu)[J];湖北大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年01期
10 應(yīng)義斌,劉燕德;水果內(nèi)部品質(zhì)光特性無(wú)損檢測(cè)研究及應(yīng)用[J];浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版);2003年02期
相關(guān)博士學(xué)位論文 前2條
1 許棠;生物組織中的光傳輸及生物組織光學(xué)特性參數(shù)測(cè)量的研究[D];南開大學(xué);2004年
2 張連順;光與生物組織的相互作用及生物組織光學(xué)特性參數(shù)測(cè)量[D];南開大學(xué);2003年
相關(guān)碩士學(xué)位論文 前4條
1 關(guān)濟(jì)雨;基于光學(xué)特性的水果損傷敏感性預(yù)測(cè)評(píng)估[D];江南大學(xué);2016年
2 何春柳;基于高光譜散射圖像的水果組織光學(xué)特性參數(shù)反演[D];江南大學(xué);2015年
3 趙鑫;光譜圖像技術(shù)在水果內(nèi)部品質(zhì)檢測(cè)中的研究[D];江南大學(xué);2014年
4 楊磊;梨子內(nèi)在品質(zhì)的近紅外漫反射光譜無(wú)損檢測(cè)技術(shù)研究[D];南京農(nóng)業(yè)大學(xué);2008年
,本文編號(hào):2315776
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2315776.html