節(jié)水灌溉智能預(yù)測系統(tǒng)構(gòu)建
[Abstract]:Drip irrigation is a local irrigation method, which is one of the most effective irrigation techniques to improve the utilization of agricultural water. It is a prerequisite to correctly design drip irrigation system and to effectively carry out water-saving irrigation to master the law of soil moisture migration. The accurate prediction of crop irrigation water demand is an important guarantee for effective water-saving. It has important guidance and reference significance for sustainable agricultural production in irrigation district. In this paper, water-saving irrigation was studied from two aspects: irrigation mode and irrigation prediction model. The main research contents are summarized as follows: (1) the dry red loam growing without crops is used as the research object. The soil moisture transfer and data collection under single point source irrigation are carried out by using soil moisture sensor, and the flow rate of dripper is mainly investigated. The effects of irrigation amount and initial water content on soil moisture front migration and the redistribution of soil moisture content after irrigation closure (.2) an adaptive partition method of basic control unit of irrigation area based on key percolation model was proposed. The irrigation condition of irrigation area is judged by the defined connectivity quantitative index, and the simulation of the algorithm is carried out by using MATALB software. The validity of the method is verified. Finally, the validity of the method is verified in the lawn field. The results show that the algorithm is feasible and practical. 3) Cucumber in greenhouse is selected as the research object, and the forecast model of irrigation water demand of cucumber is constructed by BP neural network optimized by genetic algorithm. The prediction effect of the model is verified by test samples. The results show that the model has high prediction accuracy and good accuracy. It can be applied to the prediction of water demand of greenhouse cucumber. The GUI interface of MATLAB is used to design the water demand prediction system of cucumber in greenhouse. The system has friendly man-machine interface. It is convenient for users to forecast the water demand of cucumber in greenhouse.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李長城;李宏;張志剛;程平;劉幫;韓瑩瑩;孫明森;刁凱;;滴灌條件下砂壤土棗林的水分入滲及再分布過程[J];西南農(nóng)業(yè)學(xué)報;2016年09期
2 張伶滄;王潤濤;張長利;王樹文;徐天龍;;基于調(diào)虧理論和模糊控制的寒地水稻智能灌溉策略[J];農(nóng)業(yè)工程學(xué)報;2016年13期
3 張志剛;李宏;李疆;程平;劉幫;李長城;;地表滴灌條件下滴頭流量對土壤水分入滲—再分布過程的影響[J];干旱地區(qū)農(nóng)業(yè)研究;2016年02期
4 趙文舉;郁文;范嚴(yán)偉;唐學(xué)芬;馬宏;;滴灌條件下容重對壓砂土壤水分入滲規(guī)律的影響[J];水土保持通報;2016年01期
5 李飚;魏正英;張育斌;唐大輝;;土壤墑情傳感器布點算法研究[J];節(jié)水灌溉;2015年02期
6 黃子涵;羅付林;郭華寧;唐睿聰;王仰仁;;灌溉需水量的隨機模擬研究[J];科技創(chuàng)新導(dǎo)報;2013年34期
7 王紅君;張夢;趙輝;岳有軍;;基于BP神經(jīng)網(wǎng)絡(luò)的溫室黃瓜灌溉預(yù)測模型[J];江蘇農(nóng)業(yè)科學(xué);2013年11期
8 李宏;張志剛;鄭朝輝;李丕軍;楊嬋嬋;郭光華;;南疆紅棗林地不同流量對滴灌土壤水分運移特征的影響[J];江蘇農(nóng)業(yè)科學(xué);2013年08期
9 麥麥提尼亞孜·努爾;李維;吳燕鋒;巴特爾·巴克;茹鮮·木沙;李宏;;單點滴灌模式干旱區(qū)棗園土壤水分運移特征分析[J];新疆農(nóng)業(yè)大學(xué)學(xué)報;2013年01期
10 郭慶春;王素娟;何振芳;;基于BP人工神經(jīng)網(wǎng)絡(luò)的土壤含水量預(yù)測模型的研究[J];山東農(nóng)業(yè)科學(xué);2012年12期
,本文編號:2174555
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2174555.html