高精度DEM重采樣及其對(duì)土壤侵蝕模擬的影響
本文選題:溝道侵蝕 + 坡面侵蝕 ; 參考:《西華師范大學(xué)》2017年碩士論文
【摘要】:DEM是土壤侵蝕研究的重要基礎(chǔ)數(shù)據(jù)源之一,是求算侵蝕因子如坡度、坡度坡長(zhǎng)因子、徑流強(qiáng)度指數(shù)等的數(shù)據(jù)源。一直以來,DEM在土壤侵蝕研究中不斷應(yīng)用和發(fā)展,不同比例尺DEM數(shù)據(jù)不斷豐富,促進(jìn)了基于DEM的土壤侵蝕研究在模擬實(shí)驗(yàn)、小區(qū)實(shí)驗(yàn)、小流域?qū)嶒?yàn)、流域乃至區(qū)域尺度的廣泛開展和應(yīng)用。作為派生多尺度DEM的常用方法之一,重采樣得到廣泛應(yīng)用。然而,現(xiàn)有基于DEM重采樣的研究主要集中于重采樣的數(shù)據(jù)精度變化、重采樣高程誤差及其分布特征等的研究。對(duì)于不同形態(tài)、不同坡度的地形而言,是否存在不同的最佳重采樣方法這一問題仍有待探討;此外,三種重采樣方法中,最鄰近(Nearest Neighbor, Near)、雙線性(Bilinear Interpolation,Bil)及三次卷積(Cubic Convolution,Cub)方法得到新的DEM之后,對(duì)土壤侵蝕模擬存在什么影響?三種采樣方法得到的DEM模擬的土壤侵蝕結(jié)果相似性如何?對(duì)于不同形態(tài)的地形,這種相似性是否會(huì)發(fā)什么變化?是否存在面向土壤侵蝕模擬的最佳重采樣方法?這些問題都值得進(jìn)一步研究和探索。本研究主要基于1-9期不同形態(tài)的黃土模擬小流域,分析了三種重采樣方法帶來的高程中誤差的差異特征。結(jié)果表明:中誤差按大小排序?yàn)?Near、Cub、Bil。推薦采用Bil重采樣方法。三種重采樣高程中誤差(y)與格網(wǎng)大小(x)之間的關(guān)系可以用y=kx+b型線性函數(shù)關(guān)系表達(dá)。不論哪一種重采樣方式,其派生DEM的高程中誤差(RMSE)與格網(wǎng)大小(g)、地形平均坡度(s)之間存在函數(shù)關(guān)系:RMSE=(a×s-b)×g±(c×s d)。式中,a、b、c及d都是常數(shù),其因重采樣方法的不同而不同。以Bil重采樣為例,其表達(dá)式為:RMSE=0.0116×g×s-0.0756×g+0.0676×s -0.7307。該公式以定量的形式,明確了地形表面形態(tài)、格網(wǎng)大小及其與重采樣之后的DEM高程中誤差的關(guān)系,有助于在實(shí)際運(yùn)用中依據(jù)產(chǎn)生DEM質(zhì)量要求的不同,根據(jù)高程中誤差坐標(biāo)、地形平均坡度等參數(shù),確定合適的重采樣方法和格網(wǎng)大小;赨SPED模型,模擬1-9期的潛在土壤侵蝕。對(duì)原始10mm×10mm格網(wǎng)的DEM的模擬結(jié)果表明,1-9期黃土模擬小流域溝道侵蝕極值在3、5、7期得到極大值;可以據(jù)此將9期小流域分為三個(gè)不同階段,大致對(duì)應(yīng)發(fā)育初始期、活躍期、穩(wěn)定期。當(dāng)采用原始DEM模擬結(jié)果作為參照值時(shí),三種重采樣DEM的模擬結(jié)果都存在約20%的概率,將潛在的侵蝕、沉積錯(cuò)誤地模擬為沉積、侵蝕;隨著重采樣DEM的格網(wǎng)大小由15mm×15mm增大到55mm×55mm過程中,誤分概率大致由18%增長(zhǎng)至約30%。隨著格網(wǎng)尺寸增大,模擬得到的土壤侵蝕、沉積的極值不斷降低,坡面侵蝕比溝道侵蝕降低的速度更快。三種重采樣方法重構(gòu)的DEM,在約30mmX 30mm格網(wǎng)DEM左右,其模擬的侵蝕、沉積極大值迅速降低到參考值的50%以下。溝道侵蝕極值、沉積極值降低至參考值的比例(y)、格網(wǎng)大小(g)、地形坡度(平均坡度s或最大坡度sm)之間存在定量關(guān)系,其參數(shù)隨重采樣方法的不同而不同。以Cub重采樣為例,溝道侵蝕極大值降低至參考值的比例(y)、格網(wǎng)大小(g)及地形平均坡度(s)之間的關(guān)系為:y= (0.0098 ×s2-0.517 ×s + 8.9743) ×e(0.0002×s2-0.0095×s+0.182)×g;坡面侵蝕極大值降低至參考值的比例(y)、格網(wǎng)大小(g)及地形平均坡度(s)之間的關(guān)系為:y= (0.0187 ×s2 - 0.9944×s +15.207) × e(0.0003×s2-0.0141×s+0.2395)×g。該公式明確了已知地形平均坡度前提下,不同尺度DEM模擬的坡面或溝道侵蝕極大值、沉積極大值與格網(wǎng)尺寸的關(guān)系,可以為多尺度土壤侵蝕模擬極值估算提供參考。利用X/Y散點(diǎn)圖、相似系數(shù)等對(duì)比了重采樣前后1-9期黃土模擬小流域土壤侵蝕的差異。結(jié)果表明,與原始結(jié)果相似性的程度與格網(wǎng)大小有關(guān),格網(wǎng)尺寸越接近原始格網(wǎng)大小,得到的結(jié)果越相似。三種重采樣方法模擬結(jié)果與原始DEM模擬結(jié)果相似性按從大到小排序?yàn)?Cub、Bil、Near。三種重采樣方法之間,Cub與Bil相似度很高;二者與Near模擬結(jié)果相差較大。當(dāng)DEM格網(wǎng)不斷增大時(shí),三者模擬結(jié)果的相似性不斷增強(qiáng),但偏離真實(shí)值也越來越遠(yuǎn)。
[Abstract]:DEM is one of the important basic data sources for soil erosion research, and it is a data source for calculating erosion factors such as slope, slope length factor and runoff intensity index. DEM has been continuously applied and developed in soil erosion research, and the different scale DEM data are constantly enriched, and the soil erosion research based on DEM has been promoted in simulation experiments. Experiments, small watershed experiments, basins and even regional scales are widely used and widely used. As one of the commonly used methods for deriving multiscale DEM, resampling is widely used. However, the existing research based on DEM resampling mainly focuses on the study of data precision change, resampling error and distribution characteristics of resampling. The problem of whether there is a different optimal resampling method is still to be discussed whether there are different optimal resampling methods for different slope terrain. In addition, three kinds of resampling methods, the most adjacent (Nearest Neighbor, Near), bilinear (Bilinear Interpolation, Bil) and the three convolution (Cubic Convolution, Cub) method get the new DEM, the soil erosion simulation exists What does the similarity of soil erosion results from the DEM simulation obtained by the three sampling methods? Are there any changes in this similarity for different forms of topography and the existence of the best resampling method for soil erosion simulation? These problems are worth further research and exploration. This study is based on the 1-9 stages of different shapes. In the Loess simulated small watershed, the difference characteristics of elevation error caused by three kinds of resampling methods are analyzed. The results show that the middle error is classified as Near, Cub, Bil., and Bil resampling method is recommended. The relationship between the three resampling elevation error (y) and the grid size (x) can be expressed by the y=kx+ B linear function relationship. Which method of resampling has a functional relationship between the elevation error (RMSE) of the derived DEM and the grid size (g) and the average gradient of the terrain (s): RMSE= (a * S-B) X G + (C x s d). 0.7307. the formula, in the form of quantitative, defines the surface morphology of the terrain, the size of the grid and the relationship between the error of the DEM Gao Cheng after the resampling, and is helpful to determine the appropriate resampling method and grid size according to the differences of the DEM quality requirements in the actual application, according to the error coordinates of Gao Cheng, the average slope of the terrain and so on. The USPED model is used to simulate the potential soil erosion of the 1-9 phase. The simulation results of the original 10mm x 10mm grid DEM show that the 1-9 loess simulated small watershed gully erosion extremes get maximum value in the 3,5,7 period. According to this, the 9 stage small basins can be divided into three different stages, which roughly correspond to the initial stage, the active period and the stable period. When using the original DEM simulation As a reference value, the simulation results of the three kinds of resampling DEM have about 20% probability, and the potential erosion and deposition is missimulated as deposition and erosion. As the grid size of the resampling DEM is increased from 15mm x 15mm to 55mm * 55mm, the error probability is roughly increased from 18% to about 30%. with the grid size increasing, the simulated soil is obtained. The extremum of soil erosion is decreasing, and the slope erosion is faster than the channel erosion. The reformed DEM of the three resampling methods is around the 30mmX 30mm grid DEM, and its simulated erosion, the active heavy value is rapidly reduced to less than 50% of the reference value. The channel erosion extreme value, the ratio of the sink positive value to the reference value (y), the grid size (and the size of the grid), and the grid size (y) G), there is a quantitative relationship between terrain slope (average gradient s or maximum gradient SM), and its parameters vary with the resampling method. Taking Cub resampling as an example, the maximum ratio of channel erosion to the reference value (y), the relation between the grid size (g) and the average gradient of the terrain (s) is y= (0.0098 * s2-0.517 x s + 8.9743) * e (0.0002 * s). 2-0.0095 * s+0.182) x g; the ratio of the slope erosion maximum to the reference value (y), the relation between the grid size (g) and the average gradient of the terrain (s): y= (0.0187 * S2 - 0.9944 x s +15.207) x E (0.0003 * s2-0.0141 * *) by the formula, which defines the slope surface or channel of different scales under the premise of the known terrain average slope. The relationship between the maximum erosion value, the positive heavy value and the grid size can provide reference for the estimation of the extreme value of the multi scale soil erosion simulation. Using the X/Y scatter plot and the similarity coefficient, the difference of soil erosion in the 1-9 loess simulated small basins before and after the resampling is compared. The results show that the degree of similarity to the original results is related to the grid size, and the grid is related to the grid size. The closer the size of the original grid is, the more similar the results are obtained. The similarity between the simulation results of the three resampling methods and the original DEM simulation results is between the three resampling methods: Cub, Bil, and Near., the similarity between the Cub and the Bil is very high; the two is different from the Near simulation results. When the DEM grid continues to increase, the three analog junctions are increased. The similarity of fruit is increasing, but the deviation from the true value is farther and farther away.
【學(xué)位授予單位】:西華師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S157.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 穆興民;李朋飛;高鵬;趙廣舉;孫文義;;土壤侵蝕模型在黃土高原的應(yīng)用述評(píng)[J];人民黃河;2016年10期
2 慕凱;羅明良;岳彥利;劉輝;;基于點(diǎn)云構(gòu)建干熱河谷典型沖溝DEM的參數(shù)優(yōu)選──以析取克里格插值方法為例[J];中國(guó)農(nóng)學(xué)通報(bào);2016年27期
3 徐亞莉;羅明良;梁倍瑜;昌小莉;向衛(wèi);張斌;;DEM空間插值方法對(duì)土壤侵蝕模擬的影響研究——以USPED分析干熱河谷典型沖溝為例[J];地理科學(xué)進(jìn)展;2016年07期
4 陳娟;羅明良;張斌;董丞妍;昌小莉;;反距離加權(quán)插值參數(shù)變化對(duì)元謀沖溝DEM構(gòu)建的影響[J];中國(guó)水土保持科學(xué);2015年01期
5 王春;江嶺;徐靜;楊燦燦;;DEM地面形態(tài)重構(gòu)方法的精度差異特征研究[J];地理與地理信息科學(xué);2014年04期
6 熊禮陽;湯國(guó)安;袁寶印;陸中臣;李發(fā)源;張磊;;基于DEM的黃土高原(重點(diǎn)流失區(qū))地貌演化的繼承性研究[J];中國(guó)科學(xué):地球科學(xué);2014年02期
7 呼雪梅;秦承志;;地形信息對(duì)確定DEM適宜分辨率的影響[J];地理科學(xué)進(jìn)展;2014年01期
8 陳世莉;羅明良;王春;崔靈周;;基于網(wǎng)絡(luò)圖論的黃土模擬小流域水系演化研究[J];地球與環(huán)境;2013年05期
9 汪明霞;程林;王衛(wèi)東;;黃土高原水-土-植被系統(tǒng)土壤侵蝕模型研究[J];人民黃河;2013年09期
10 張浚哲;朱文泉;董燕生;姜乃文;潘耀忠;;一種基于變權(quán)重組合的光譜相似性測(cè)度[J];測(cè)繪學(xué)報(bào);2013年03期
相關(guān)博士學(xué)位論文 前1條
1 張小文;祖厲河流域土壤侵蝕與水文—地貌過程變化的GIS輔助模擬[D];蘭州大學(xué);2006年
,本文編號(hào):2108321
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2108321.html