天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

不同環(huán)境要素影響下大型海藻碎屑分解研究

發(fā)布時(shí)間:2018-06-30 02:11

  本文選題:大型海藻 + 海藻碎屑��; 參考:《上海海洋大學(xué)》2017年碩士論文


【摘要】:水生植物凋落物是生態(tài)系統(tǒng)中的重要組成部分,參與物質(zhì)循環(huán)和轉(zhuǎn)化的基礎(chǔ),是海底沉積物或水體養(yǎng)分等的重要來(lái)源,讓生態(tài)系統(tǒng)中養(yǎng)分得以恢復(fù)和增加,進(jìn)而提高生態(tài)系統(tǒng)中的生產(chǎn)力,為維持海洋生態(tài)系統(tǒng)等物質(zhì)和能量循環(huán)有著密切聯(lián)系。凋落物的分解就是將無(wú)機(jī)營(yíng)養(yǎng)元素從有機(jī)物質(zhì)中釋放出來(lái)的過(guò)程,也是生態(tài)系統(tǒng)中物質(zhì)循環(huán)和能量流動(dòng)的重要環(huán)節(jié)之一,對(duì)生態(tài)系統(tǒng)的功能和結(jié)構(gòu)起重要作用。島礁海域的海藻場(chǎng)生態(tài)系統(tǒng)中,海藻場(chǎng)生態(tài)系統(tǒng)中約10%的初級(jí)生產(chǎn)力是通過(guò)直接攝食作用而進(jìn)入食物網(wǎng),剩余90%通過(guò)碎屑或溶解有機(jī)質(zhì)進(jìn)入食物鏈。碎屑除了以初級(jí)生產(chǎn)者身份進(jìn)入碎屑食物網(wǎng)這一途徑,未被攝食者利用的碎屑自身受環(huán)境影響會(huì)不斷自溶或被分解者分解進(jìn)入到海域環(huán)境,同時(shí)伴隨水流潮汐作用使得海藻碎屑和底棲微藻等小顆粒物質(zhì)會(huì)隨海流擴(kuò)散至周?chē)鷾\海沙灘或是巖礁潮間帶或是深海處等各種不同生境處,海藻碎屑進(jìn)入不同海域環(huán)境內(nèi),受到不同海域環(huán)境條件差異進(jìn)而影響其分解和營(yíng)養(yǎng)元素釋放或吸收量差異。本論文主要探究不同環(huán)境要素(溫度、光照強(qiáng)度、溶解氧)影響下海藻碎屑分解規(guī)律,并對(duì)不同大型海藻的碎屑分解進(jìn)行比較分析,同時(shí)還對(duì)有無(wú)微生物作用對(duì)海藻碎屑分解差異進(jìn)行了研究。結(jié)果表明:(1)不同溫度、光強(qiáng)、溶解氧條件下,瓦氏馬尾藻碎屑質(zhì)量損失率在2個(gè)月的實(shí)驗(yàn)周期內(nèi)皆大于60%,瓦氏馬尾藻碎屑剩余物質(zhì)干重和分解速率受光照強(qiáng)度影響顯著(P0.05);在溫度25.15℃、光強(qiáng)3200 lx,氧充足條件更有利于瓦氏馬尾藻碎屑分解,瓦氏馬尾藻碎屑剩余物質(zhì)干重最小,實(shí)驗(yàn)?zāi)┢诤T逅樾际е芈士蛇_(dá)84.70%,平均分解速率為0.08d-1;溫度對(duì)瓦氏馬尾藻碎屑分解釋放氮磷營(yíng)養(yǎng)鹽影響不顯著(P0.05);在同一溫度(25.15℃)條件下,有無(wú)光照條件對(duì)水體正磷酸鹽濃度影響顯著(P0.05);光照強(qiáng)度對(duì)水體內(nèi)銨態(tài)氮和正磷酸鹽濃度變化具有顯著影響(P0.05),溶解氧濃度差異對(duì)氨氮、磷酸鹽和硅酸鹽濃度變化影響顯著(P0.05);在不同環(huán)境要素影響下單位瓦氏馬尾藻碎屑對(duì)氮、磷、硅的營(yíng)養(yǎng)鹽貢獻(xiàn)度為溶解無(wú)機(jī)氮(DIN)1.51~3.81mg·g-1,溶解性磷酸鹽(DIP)7.72~10.14mg·g-1,活性硅酸鹽(SiO42-)1.09~4.78 mg·g-1。研究表明,瓦氏馬尾藻碎屑分解釋放活性磷酸鹽(DIP)貢獻(xiàn)量最大,溶解無(wú)機(jī)氮(DIN)、活性硅酸鹽貢獻(xiàn)量次之。(2)銅藻碎屑在2個(gè)月的分解實(shí)驗(yàn)周期里失重率均高于60%,且隨溫度升高、光照強(qiáng)度增大,溶解氧濃度升高,海藻碎屑的失重率為78.29%,富氧條件下銅藻碎屑分解速率可達(dá)0.03d-1,均高于光照強(qiáng)度和溫度實(shí)驗(yàn)中銅藻碎屑分解速率;銅藻碎屑分解過(guò)程中,氮、磷、硅三項(xiàng)無(wú)機(jī)營(yíng)養(yǎng)鹽含量變化受溫度、光照強(qiáng)度影響顯著(P0.05),隨培養(yǎng)時(shí)間的延長(zhǎng)對(duì)無(wú)機(jī)營(yíng)養(yǎng)鹽的濃度變化也有顯著影響(P0.05),溶解氧對(duì)氨氮和硅酸鹽濃度差異影響顯著(P0.05),對(duì)硝酸鹽、亞硝酸鹽和正磷酸鹽濃度變化影響不顯著(P0.05);不同環(huán)境要素影響下,銅藻碎屑分解對(duì)氮、磷、硅生源要素貢獻(xiàn)度差異較大,單位海藻碎屑在29.5℃溫度條件下對(duì)DIP的貢獻(xiàn)度為2.44~12.93 mg·g-1,高于光照條件和溶解氧環(huán)境下DIP貢獻(xiàn)量;DIN在光照強(qiáng)度影響下單位銅藻碎屑釋放趨勢(shì)大,累積貢獻(xiàn)量為-0.94~0.80 mg·g-1;硅酸鹽釋放易于在富氧(5~9mg/l)條件下,單位累積釋放量可達(dá)25.20 mg·g-1。銅藻碎屑分解對(duì)硅酸鹽貢獻(xiàn)量最大,磷酸鹽次之,對(duì)DIN總體呈現(xiàn)吸收狀態(tài)。(3)將有氯仿的微生物抑制劑作為實(shí)驗(yàn)組,無(wú)添加氯仿的為對(duì)照組。結(jié)果表明:有微生物抑制劑的實(shí)驗(yàn)組海藻碎屑分解速率是對(duì)照組的1.53倍,且實(shí)驗(yàn)組和對(duì)照組的海藻碎屑失重率分別為81.5%、75.27%;海藻碎屑分解初期實(shí)驗(yàn)組和對(duì)照組中氨氮釋放量均出現(xiàn)顯著降低,但在第7天后實(shí)驗(yàn)組氨氮有上升趨勢(shì),并一直高于對(duì)照組,對(duì)照組氨氮釋放量一直維持穩(wěn)定的較低釋放量,氨氮釋放趨勢(shì)與硝酸鹽-氮釋放趨勢(shì)恰好相反;實(shí)驗(yàn)組磷酸鹽一直持續(xù)較高且穩(wěn)定的趨勢(shì),碎屑分解期間釋放的最高值達(dá)到3.89 mg·L-1,而對(duì)照組海藻碎屑釋放磷酸鹽含量一直持續(xù)降低,直到實(shí)驗(yàn)?zāi)┢趦H為1.43 mg·L-1;硅酸鹽含量在海藻碎屑分解過(guò)程中呈現(xiàn)持續(xù)上升趨勢(shì),在實(shí)驗(yàn)結(jié)束含量最高為9.26 mg·L-1,而在對(duì)照組硅酸鹽釋放量微小,且實(shí)驗(yàn)?zāi)┢诠杷猁}含量?jī)H為0.03 mg·L-1。在海藻碎屑分解實(shí)驗(yàn)中,微生物抑制劑對(duì)海藻碎屑分解釋放氮、磷、硅營(yíng)養(yǎng)鹽有差異,單位海藻碎屑在實(shí)驗(yàn)組中DIN、DIP、SiO42-累積釋放量是對(duì)照組的1.21倍、1.16倍、2.31倍,微生物抑制劑在海藻碎屑分解過(guò)程中對(duì)溶解無(wú)機(jī)磷(DIP)影響最小,對(duì)硅酸鹽(SiO42-)影響最大,有無(wú)微生物作用對(duì)海藻碎屑分解釋放營(yíng)養(yǎng)元素起到重要調(diào)節(jié)作用。
[Abstract]:Aquatic plant litter is an important part of the ecosystem. It is an important part of the circulation and transformation of material. It is an important source of marine sediment or water conservation. It makes the ecosystem in the ecosystem recover and increase, and then improve the productivity in the ecosystem, so as to maintain the circulation of the marine ecosystem and other materials and energy. The decomposition of litter is the process of releasing inorganic nutrients from organic matter. It is also one of the important links of material circulation and energy flow in the ecosystem. It plays an important role in the function and structure of the ecosystem. In the algae field ecosystem of the island reef sea, about 10% of the primary productivity in the algae field ecosystem. To enter the food network by direct feeding, the remaining 90% enters the food chain through detritus or dissolved organic matter. In addition to the entry into the detrital food network as a primary producer, the detritus that the detritus is not used by the feeding person will continue to dissolve or decompose into the marine environment, accompanied by the flow of water. The tidal effects make the small particles such as algae debris and benthic microalgae spread to the surrounding shallow sea sand or the intertidal zone of the reef or the deep sea and other different habitats. The algae debris enters the different marine environment, and is affected by the differences in the environmental conditions of different sea areas and the release of nutrient elements or the difference of absorption. This paper mainly explores the decomposition rules of seaweed fragments under the influence of different environmental factors (temperature, light intensity, dissolved oxygen), and analyses the decomposition of debris from different large algae, and studies the decomposition difference of seaweed fragments without microorganism. The results show: (1) under different temperatures, light intensity, and dissolved oxygen, tile The mass loss rate of Sargassum detritus was greater than 60% in the 2 month experimental period. The dry weight and decomposition rate of the residue of Sargassum valsalam were significantly affected by the light intensity (P0.05). At 25.15 C, the light intensity was 3200 LX, and the oxygen sufficient conditions were more conducive to the decomposition of the debris of the valsargasus, and the dry weight of the debris residue of Sargassum waglis was the smallest. The end stage weight loss rate of the algae debris can reach 84.70%, the average decomposition rate is 0.08d-1, and the effect of temperature on the decomposition and release of nitrogen and phosphorus nutrients of the debris of Sargassum waghl is not significant (P0.05). Under the same temperature (25.15 degrees C), there is no light condition on the concentration of phosphate (P0.05), and the intensity of light is on the ammonium and orthophosphate in the water body. The change of salt concentration had significant influence (P0.05), and the difference of dissolved oxygen concentration had a significant effect on the changes of ammonia, phosphate and silicate concentration (P0.05). The contribution of the unit to nitrogen, phosphorus and silicon was dissolved inorganic nitrogen (DIN) 1.51~3.81mg. G-1, and dissolved phosphate (DIP) 7.72~10.14mg. G-1 under the influence of different environmental factors. The active silicate (SiO42-) 1.09~4.78 mg / g-1. studies showed that the contribution of the detrital release active phosphate (DIP) of Sargassum vwis (DIP) was the largest, the dissolved inorganic nitrogen (DIN) and the active silicate contributed the second. (2) the weight loss rate of the copper algae debris in the decomposition experiment period of 2 months was higher than 60%, and the light intensity increased and the dissolved oxygen concentration increased with the increase of temperature. The weight loss rate of algae debris was 78.29%, and the decomposition rate of copper algae was up to 0.03d-1 under the condition of oxygen enrichment, which was higher than the decomposition rate of copper algae in the light intensity and temperature experiments. In the process of decomposition of copper algae, the changes of three inorganic nutrients in nitrogen, phosphorus and silicon were affected by temperature and light intensity (P0.05), with the prolongation of culture time. The concentration changes of inorganic nutrients were also significantly affected (P0.05). The effects of dissolved oxygen on the concentration of ammonia nitrogen and silicate were significant (P0.05), and the effects on nitrate, nitrite and orthophosphate concentration were not significant (P0.05); the contribution degree of the decomposition of copper algae to nitrogen, phosphorus and silicon source was greatly different under the influence of different environmental factors. The contribution of detritus to DIP at 29.5 C was 2.44~12.93 mg. G-1, which was higher than the light conditions and DIP contribution in the dissolved oxygen environment. Under the influence of illumination intensity, the release trend of the unit copper algae was large, the cumulative contribution was -0.94~0.80 mg. G-1, and the release amount of the unit was 25 under the condition of oxygen enrichment (5~9mg/l), and the cumulative release of the unit could reach 25. The decomposition of.20 mg / g-1. copper algae is the largest contribution to silicate, phosphate is the second, and the total absorption of DIN is present. (3) there will be chloroform microbial inhibitors as experimental group, no chloroform as the control group. The results show that the decomposition rate of algae debris in the experimental group with microbial inhibitors is 1.53 times that of the control group, and the experimental group and the pair The weight loss rate of algae debris in the group was 81.5%, 75.27%, respectively, and the ammonia nitrogen release in the early experiment group and the control group decreased significantly, but in the seventh days, the ammonia nitrogen in the experimental group increased, and was always higher than the control group. The ammonia nitrogen release rate of the control group remained low, the ammonia nitrogen release trend and nitric acid were in the control group. The trend of salt nitrogen release is just the opposite; in the experimental group, the highest and stable trend of phosphate continues to reach 3.89 mg. L-1 during the detrital decomposition, while the content of phosphate release phosphate in the control group continues to decrease until the end of the experiment is only 1.43 mg. L-1; silicate content is held in the decomposition process of seaweed detrital. At the end of the experiment, the highest content was 9.26 mg. L-1, while the silicate released in the control group was small, and the silicate content was only 0.03 mg. L-1. at the end of the experiment. The microbial inhibitors disassembled nitrogen, phosphorus and silicon nutrients for the decomposition of seaweed debris, and the unit algae debris in the experimental group was DIN, DIP, SiO4. The cumulative release of 2- was 1.21 times, 1.16 times and 2.31 times of the control group. Microbial inhibitors had the least influence on dissolved inorganic phosphorus (DIP) during the decomposition of seaweed detritus, and had the greatest influence on the silicate (SiO42-), and the microbial effect played an important role in the release of nutrients to the decomposition and release of algae.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:S917.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 畢遠(yuǎn)新;王偉定;;風(fēng)浪對(duì)枸杞島銅藻(Sargassum horneri)分布格局的影響[J];生態(tài)學(xué)雜志;2016年06期

2 陳亮然;章守宇;陳彥;趙旭;周曦杰;陳瀛洲;;枸杞島馬尾藻場(chǎng)銅藻的生命史與形態(tài)特征[J];水產(chǎn)學(xué)報(bào);2015年08期

3 王博;葉春;李春華;孔祥龍;;不同氧環(huán)境中黑藻腐解過(guò)程及對(duì)水體-底泥碳、氮、磷的影響[J];應(yīng)用與環(huán)境生物學(xué)報(bào);2013年03期

4 唐金艷;曹培培;徐馳;劉茂松;;水生植物腐爛分解對(duì)水質(zhì)的影響[J];應(yīng)用生態(tài)學(xué)報(bào);2013年01期

5 曾從盛;張林海;王天鵝;張文娟;仝川;;閩江河口濕地植物枯落物立枯和倒伏分解主要元素動(dòng)態(tài)[J];生態(tài)學(xué)報(bào);2012年20期

6 李柯;關(guān)保華;劉正文;;藍(lán)藻碎屑分解速率及氮磷釋放形態(tài)的實(shí)驗(yàn)分析[J];湖泊科學(xué);2011年06期

7 王新剛;呂錫武;張圣菊;;水生植物分解過(guò)程中生物質(zhì)及氮磷釋放規(guī)律研究[J];安全與環(huán)境學(xué)報(bào);2011年05期

8 周麗;李彥;唐立松;黃剛;;光降解在凋落物分解中的作用[J];生態(tài)學(xué)雜志;2011年09期

9 王蕾;章守宇;汪振華;王凱;林軍;;枸杞島近岸3種生境魚(yú)類(lèi)群落組成及巖礁區(qū)底棲海藻對(duì)魚(yú)類(lèi)群落結(jié)構(gòu)的影響[J];水產(chǎn)學(xué)報(bào);2011年07期

10 孫建璋;莊定根;孫慶海;逄少軍;;銅藻人工栽培的初步研究[J];南方水產(chǎn);2009年06期

相關(guān)博士學(xué)位論文 前4條

1 吳彬;黃、東海沉積物中生物硅的分布、溶解及影響因素研究[D];中國(guó)海洋大學(xué);2015年

2 牛小云;日本落葉松枯落物分解過(guò)程及其生物學(xué)特征研究[D];中國(guó)林業(yè)科學(xué)研究院;2015年

3 陳卉;中國(guó)兩種亞熱帶紅樹(shù)林生態(tài)系統(tǒng)的碳固定、掉落物分解及其同化過(guò)程[D];廈門(mén)大學(xué);2013年

4 葛曉改;三峽庫(kù)區(qū)馬尾松林凋落物分解及對(duì)土壤碳庫(kù)動(dòng)態(tài)的影響研究[D];中國(guó)林業(yè)科學(xué)研究院;2012年

相關(guān)碩士學(xué)位論文 前4條

1 肖文婭;間伐強(qiáng)度對(duì)杉木人工林凋落物分解的影響[D];南京林業(yè)大學(xué);2015年

2 鞏崇賢;大型水生植物腐爛分解的研究[D];華中師范大學(xué);2014年

3 杜立剛;三峽庫(kù)區(qū)消落帶植被淹水碳氮磷釋放及消落帶氮磷交換通量研究[D];重慶大學(xué);2013年

4 劉白貴;閩江河口濕地蘆葦、短葉茳芏和互花米草三種植物枯落物分解研究[D];福建師范大學(xué);2008年

,

本文編號(hào):2084396

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2084396.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)6b07d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com