沼氣集中供氣工程太陽能增溫技術(shù)研究
本文選題:沼氣工程 + 太陽能。 參考:《浙江大學(xué)》2017年碩士論文
【摘要】:戶用沼氣正在向整村沼氣集中供氣轉(zhuǎn)變,大中型沼氣池具有廣闊的發(fā)展前景,研究開發(fā)太陽能沼氣池供熱系統(tǒng)具有十分重要的意義。本文針對(duì)大中型沼氣池冬季發(fā)酵溫度低、控制方式不合理等問題,對(duì)太陽能沼氣池供熱系統(tǒng)進(jìn)行深入研究。對(duì)浙江省諸暨市太陽能加熱沼氣工程和浙江省開化縣太陽能-空氣源熱泵加熱沼氣工程的池內(nèi)外熱環(huán)境進(jìn)行現(xiàn)場(chǎng)連續(xù)檢測(cè),檢測(cè)參數(shù)包括室外環(huán)境參數(shù)(環(huán)境溫度、太陽總輻射強(qiáng)度、風(fēng)速風(fēng)向)、沼氣池溫度、水箱溫度和熱流量。并利用測(cè)試數(shù)據(jù)分析兩個(gè)實(shí)驗(yàn)沼氣池的加熱系統(tǒng)性能,找出系統(tǒng)薄弱環(huán)節(jié)提出改進(jìn)意見。研究結(jié)果表明,浙江諸暨地區(qū)的太陽能加熱沼氣工程,在2015年12月8日至2016年3月31日期間,總熱負(fù)荷中占比最大的是池體散熱,其中頂部散熱量占總熱負(fù)荷的29.39%~29.74%,底部散熱量占18.09%~18.39%,側(cè)壁散熱量占38.41%~39.03%。12月8日~1月27日由于太陽能輻射強(qiáng)度小、循環(huán)溫差設(shè)定值較高導(dǎo)致無法達(dá)到當(dāng)前設(shè)定循環(huán)溫差,所以沼氣池在該期間沒有得到熱量。當(dāng)前投料量遠(yuǎn)低于理論投料量,從22℃開始即使沼液溫度增加,產(chǎn)氣量也不會(huì)增加。浙江開化地區(qū)的太陽能-空氣源熱泵加熱沼氣工程,在2015年12月9日至2016年3月31日測(cè)試期間,總的熱損失中沼氣池最主要的能量散失途徑是池體散熱量,頂部散熱量占36.33%~41.98%,底部散熱量占19.70%~27.55%,側(cè)壁散熱量占14.94%~15.80%。沼氣池的發(fā)酵溫度上限值是23℃,超過這個(gè)上限值后即使發(fā)酵溫度增加產(chǎn)氣量也不會(huì)增加。利用能量守恒原理建立太陽能沼氣池供熱系統(tǒng)數(shù)學(xué)模型,并用模擬值和實(shí)測(cè)值之間的平均誤差和平均相對(duì)誤差驗(yàn)證模型的準(zhǔn)確性。結(jié)果表明,在典型的晴天、多云和陰天,開化縣沼氣池和諸暨沼氣池中的料液溫度的檢測(cè)值和模擬值的最大平均誤差分別是0.159℃和0.285℃,其最大相對(duì)誤差分別為0.73%和1.47%,模型準(zhǔn)確度良好。根據(jù)諸暨太陽能沼氣池供熱系統(tǒng)模型,利用與諸暨地區(qū)相近的杭州典型年數(shù)據(jù)進(jìn)行模擬,改變太陽能集熱器與儲(chǔ)熱水箱、儲(chǔ)熱水箱與沼氣池之間的循環(huán)溫差。結(jié)果發(fā)現(xiàn):在12月~3月,太陽能與儲(chǔ)熱水箱和儲(chǔ)熱水箱與沼氣池沼液的循環(huán)溫差為(15℃,10℃、(15℃,5℃、(10℃,10℃、(10℃,5℃ 和(5℃,5℃時(shí)的平均溫度比當(dāng)前的循環(huán)溫差(15℃,15℃)下分別高2.49℃、3.48℃、3.57℃、4.64℃和5.41℃。在當(dāng)前投料量下循環(huán)溫差為(5℃,5℃)的時(shí)候,12月份~3月份發(fā)酵溫度都高于22℃,日產(chǎn)氣量保持68m3左右。所以循環(huán)溫差如果繼續(xù)減小,發(fā)酵溫度會(huì)增加,但是在投料量不變的情況下,產(chǎn)氣量不變,因此建議循環(huán)溫差設(shè)置為(5℃,5℃)。根據(jù)建立的開化太陽能沼氣池供熱系統(tǒng)模型,利用與開化地區(qū)相近的衢州典型年數(shù)據(jù)模擬分析發(fā)酵溫度23℃時(shí)的系統(tǒng)運(yùn)行情況。得出以下結(jié)論:(1)在系統(tǒng)總耗電量中熱泵機(jī)組耗電量占據(jù)的份額最大,達(dá)到60%以上;(2)低溫季節(jié)的系統(tǒng)總耗電量占全年系統(tǒng)總耗電量的80.29%;(3)集熱器面積在50m2~100m2時(shí),聯(lián)合加熱系統(tǒng)的經(jīng)濟(jì)性優(yōu)于單獨(dú)的空氣源熱泵加熱系統(tǒng)。如果集熱器單價(jià)在700元/m2內(nèi),投資效益凈現(xiàn)值隨太陽能集熱器面積的增加而增加。在太陽能集熱器單價(jià)為800元/m2時(shí),投資效益凈現(xiàn)值在80 m2時(shí)達(dá)到最大值,然后開始減小。最后,設(shè)計(jì)計(jì)算一個(gè)杭州地區(qū)利用太陽能和空氣源熱泵聯(lián)合加熱的500 m3標(biāo)準(zhǔn)鋼筋混凝土沼氣池,然后建立相應(yīng)的太陽能沼氣池供熱系統(tǒng)數(shù)學(xué)模型,模擬分析了杭州地區(qū)典型年利用太陽能和空氣源熱泵聯(lián)合加熱的500m3標(biāo)準(zhǔn)鋼筋混凝土沼氣池的兩種情況:(1)給定加熱系統(tǒng)改變發(fā)酵溫度設(shè)定值;(2)給定發(fā)酵溫度和空氣源熱泵功率改變太陽能面積。得出以下結(jié)論:1.加熱系統(tǒng)中太陽能集熱器面積為184m2,空氣源熱泵機(jī)組功率7.5kW時(shí),在20℃~30℃發(fā)酵溫度范圍內(nèi),在沼氣定價(jià)為1.2元/m3時(shí),在低溫季節(jié)和全年情況下,凈利潤都先增加后減小,并且都在29℃時(shí)達(dá)到最大值。所以如果以利潤最大化為目標(biāo),建議全年發(fā)酵溫度設(shè)定在29℃。將沼氣換算為天然氣價(jià)格時(shí),售價(jià)為2.27元/m3,低溫季節(jié)和全年的凈利潤在20℃~30℃內(nèi)都隨著發(fā)酵溫度增加而增加,所以發(fā)酵溫度設(shè)定值越高經(jīng)濟(jì)性越好。2.給定發(fā)酵溫度25℃,對(duì)應(yīng)的加熱系統(tǒng)中加熱系統(tǒng)中空氣源熱泵機(jī)組功率為7.5kW,太陽能集熱器面積變化區(qū)間是30 m2~250 m2。太陽能集熱器單價(jià)為500元/m2時(shí),投資效益凈現(xiàn)值為正值且隨著集熱器面積增加而增加。集熱器單價(jià)為600、700和800元/m2時(shí),投資效益凈現(xiàn)值最大時(shí)對(duì)應(yīng)的集熱器面積分別是220 m2、210 m2 和 170 m2。
[Abstract]:The household biogas is changing to the whole village biogas, and the large and medium-sized biogas pool has a broad development prospect. It is of great significance to study and develop the heating system of the solar biogas pool. In this paper, the heating system of the solar biogas digester is deeply researched in view of the low fermentation temperature of the large and medium-sized biogas digesters in winter and the unreasonable control methods. The thermal environment of the solar heating biogas project in Zhuji, Zhejiang and the heat environment of the solar air source heat pump in Kaihua County, Zhejiang Province, was tested in a continuous field. The parameters included outdoor environmental parameters (ambient temperature, total solar radiation intensity, wind speed and wind direction), the temperature of the biogas pool, the temperature of the water tank and the heat flow. The test data analyses the performance of the heating system of two experimental biogas pools and finds out the weakness of the system. The results show that the maximum heat load in the total heat load in the Zhuji area of Zhejiang is the largest in the total heat load during the period from December 8, 2015 to March 31, 2016, and the amount of the top heat dissipation in the total heat load is the total heat load. From 29.39% to 29.74%, the heat dissipation at the bottom is 18.09% ~ 18.39%, the heat dissipation of the side wall is 38.41% ~ 39.03%.12 months 8 ~ January 27th, because the solar radiation intensity is small and the set value of the cycle temperature difference is high, which can not reach the current set cycle temperature difference, so the biogas pool has not got the heat during this period. The current dosage is far below the theoretical dosage, from 2. The amount of gas production will not increase even if the temperature of the biogas liquid is increased at 2 C. The solar air source heat pump in the Zhejiang Kaihua area is used to heat the biogas project. During the period from December 9, 2015 to March 31, 2016, the main energy dissipation way of the total heat loss in the total heat loss is the amount of heat dissipation in the pool, the heat dissipation at the top is 36.33% to 41.98%, and the bottom heat dissipation is in the bottom. The amount of 19.70% ~ 27.55% and the upper limit of the fermentation temperature of the side wall heat dissipation in 14.94% ~ 15.80%. methane pool is 23. After the upper limit is above the upper limit, the gas production will not increase even if the fermentation temperature increases. By using the principle of conservation of energy, the mathematical model of the heating system of the solar biogas pool is established, and the average error between the simulated and measured values is peaceful. The results show that the maximum average errors of the measured values and the simulated values of the liquid temperature in the typical sunny days, cloudy and cloudy days, and the maximum average errors of the measured and simulated values in the biogas pool and the Zhuji biogas pool in Kaihua County are 0.159 and 0.285, respectively, and the maximum relative errors are 0.73% and 1.47% respectively, and the accuracy of the model is good. According to Zhuji too The heat supply system model of the Yang energy digester is used to simulate the cycle temperature difference between the solar collector and the heat storage tank, the heat storage tank and the biogas pool in Zhuji, which is similar to the Hangzhou typical year data. The results show that the cycle temperature difference between the solar energy storage tank and the hot water storage tank and the biogas tank from December to March is (15, 10). At 15, 5, (10, 10, 10, 5, 5, 5), the average temperature was higher than the current cycle temperature difference (15, 15, 15), respectively, higher 2.49 degrees, 3.48, 3.57, 4.64, and DEG C. The temperature difference between December and March was higher than that of 68m3. If the cycle temperature difference continues to decrease, the fermentation temperature will increase, but the amount of gas production is constant when the feeding amount is constant. Therefore, it is suggested that the cycle temperature difference be set to (5 degrees C, 5 C). According to the established model of the heating system of the solar biogas digester, the fermentation temperature is simulated and analyzed by the typical year data of Quzhou, which is close to the Kaihua area. The following conclusions are drawn: (1) the share of the power consumption of the heat pump unit is the largest in the total energy consumption of the system, reaching more than 60%. (2) the total energy consumption of the system in the low temperature season accounts for 80.29% of the total energy consumption of the whole year system. (3) the economy of the combined heating system is superior to the separate air source heat pump when the collector area is 50m2 to 100m2. If the unit price of the collector is within 700 yuan /m2, the net present value of the investment benefit increases with the increase of the solar collector area. When the unit price of the solar collector is 800 yuan /m2, the net present value of the investment benefit reaches the maximum at 80 m2, and then begins to decrease. Finally, a solar and air source heat pump in Hangzhou area is designed and calculated. The 500 m3 standard reinforced concrete biogas digester was heated, and then the corresponding mathematical model of the solar biogas pool heating system was established. Two cases of the typical 500m3 standard reinforced concrete biogas pool, which was combined with solar energy and air source heat pump in Hangzhou area, were simulated and analyzed. (1) a given heating system changed the setting value of the fermentation temperature; (2 Given the given fermentation temperature and the power of the air source heat pump to change the area of solar energy, the following conclusions are drawn: 1. when the area of the solar collector is 184m2 and the power of the air source heat pump unit is 7.5kW, the value of the biogas price is 1.2 yuan /m3, and the net profit is increased first in the low temperature season and the whole year. Reduce, and reach the maximum at 29 degrees. So if the maximum profit is taken as the goal, it is suggested that the fermentation temperature of the year be set at 29. When the biogas is converted to natural gas price, the price is 2.27 yuan /m3, the low temperature season and the whole year net profit increase with the increase of the fermentation temperature at 20 to 30 degrees, so the higher the temperature of the fermentation is, the more the temperature is set. The high economy is better, the better the.2. temperature is 25 C, the air source heat pump unit in the heating system is 7.5kW in the heating system, the area of the solar collector area is 30 m2 to 250 m2. solar collector unit price of 500 yuan /m2, the net present value of the investment benefit is positive and increases with the increase of the collector area. For the 600700 and 800 yuan /m2, the area of the collector area corresponding to the maximum net present value of investment benefits is 220 m2210 m2 and 170 m2. respectively.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S216.4;S214
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳錫明;太陽能技術(shù)正在走整合之路[J];可再生能源;2002年03期
2 ;太陽能技術(shù)清上園住宅成功示范[J];建設(shè)科技;2005年Z1期
3 ;蘭州將成立“國際太陽能技術(shù)促進(jìn)轉(zhuǎn)讓中心”[J];甘肅科學(xué)學(xué)報(bào);2006年01期
4 李海英;白玉星;;太陽能技術(shù)在建筑中應(yīng)用的綜合策略[J];工業(yè)建筑;2007年03期
5 王少南;;加快發(fā)展我國太陽能技術(shù)的幾點(diǎn)建議[J];廣西城鎮(zhèn)建設(shè);2009年01期
6 ;中國科學(xué)院啟動(dòng)太陽能行動(dòng)計(jì)劃[J];電網(wǎng)技術(shù);2009年04期
7 閆明月;;中國科學(xué)院啟動(dòng)太陽能行動(dòng)計(jì)劃[J];節(jié)能;2009年01期
8 ;太陽能技術(shù)的開發(fā)與利用[J];華電技術(shù);2010年01期
9 劉閩敏;金曉東;;建筑與太陽能技術(shù)一體化設(shè)計(jì)[J];山西建筑;2010年13期
10 凌;;太陽能技術(shù)的近期與中期[J];能源工程;1985年02期
相關(guān)會(huì)議論文 前10條
1 ;使用太陽能將比原油更便宜[A];節(jié)能減排論壇——福建省科協(xié)第八屆學(xué)術(shù)年會(huì)衛(wèi)星會(huì)議論文?痆C];2008年
2 盧磊;陳效華;劉淑娟;王秀田;;一種在汽車上應(yīng)用太陽能技術(shù)的設(shè)計(jì)方案[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 王崢;郭振偉;;合肥海頓公館太陽能一體化設(shè)計(jì)與應(yīng)用分析[A];2008天津綠色建筑論壇、2008天津建材行業(yè)信息化與電子商務(wù)論壇論文集[C];2008年
4 王啟鑌;宋蕾;李萍;宋智勇;王東;;建筑設(shè)計(jì)中太陽能技術(shù)的綜合利用[A];全國暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)資料集[C];2010年
5 張紅麗;李杰;;住宅太陽能設(shè)計(jì)應(yīng)注意的幾個(gè)問題[A];土木建筑學(xué)術(shù)文庫(第13卷)[C];2010年
6 陳衛(wèi)華;;太陽能技術(shù)在奧運(yùn)水上公園設(shè)計(jì)中的應(yīng)用[A];全國住宅工程太陽能熱水應(yīng)用研討會(huì)論文集[C];2004年
7 江猛;舒水明;胡新華;丁國忠;吳一梅;;太陽能綜合試驗(yàn)房技術(shù)[A];“兩區(qū)”同建與科學(xué)發(fā)展——武漢市第四屆學(xué)術(shù)年會(huì)論文集[C];2010年
8 苑金芳;李紅;;太陽能建筑一體化——陽臺(tái)壁掛太陽能的應(yīng)用[A];河南省土木建筑學(xué)會(huì)2010年學(xué)術(shù)研討會(huì)論文集[C];2010年
9 劉芳;邢永杰;;太陽能在暖通空調(diào)中的應(yīng)用[A];全國暖通空調(diào)制冷2000年學(xué)術(shù)年會(huì)資料集[C];2000年
10 徐寶江;陳義波;陳九法;李海清;;海林太陽能輔助地源熱泵供熱的可行性分析[A];走中國創(chuàng)造之路——2011中國制冷學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 駐甘肅記者 王琰田;發(fā)展中國家太陽能國際研討會(huì)在蘭州召開[N];中國建材報(bào);2007年
2 記者 陳宗立;蘭州建立“國際太陽能技術(shù)促進(jìn)轉(zhuǎn)讓中心”[N];光明日?qǐng)?bào);2006年
3 記者 李峰 尤婷婷;國際太陽能技術(shù)促進(jìn)轉(zhuǎn)讓中心項(xiàng)目啟動(dòng)[N];甘肅日?qǐng)?bào);2006年
4 記者 王艷明;蘭州將建國際太陽能技術(shù)中心[N];經(jīng)濟(jì)參考報(bào);2006年
5 中國樓市記者 何云云;太陽能技術(shù)推廣“內(nèi)外”受困[N];中國建設(shè)報(bào);2006年
6 駐甘肅記者 王琰田;國際太陽能中心項(xiàng)目在蘭州開工[N];中國建材報(bào);2007年
7 記者 趙曉霞;中科院太陽能行動(dòng)計(jì)劃啟動(dòng)[N];人民日?qǐng)?bào)海外版;2009年
8 吳晶晶;中國科學(xué)院啟動(dòng)太陽能行動(dòng)計(jì)劃[N];中國建設(shè)報(bào);2009年
9 陸曉輝;第六屆中國國際太陽能秋交會(huì)將在常州舉行[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2008年
10 記者 陳宗立 通訊員 韓業(yè)庭;首個(gè)國際太陽能中心在蘭州建成[N];光明日?qǐng)?bào);2009年
相關(guān)博士學(xué)位論文 前1條
1 江清陽;與新型百葉集熱墻結(jié)合的復(fù)合太陽能炕系統(tǒng)實(shí)驗(yàn)和理論研究[D];中國科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 陳景;太陽能熱水和熱泵復(fù)合熱源的輻射供暖系統(tǒng)的優(yōu)化設(shè)計(jì)研究[D];東南大學(xué);2015年
2 朱洪新;太陽能—地源熱泵復(fù)合能量系統(tǒng)在建筑節(jié)能中的應(yīng)用研究[D];山東建筑大學(xué);2016年
3 徐輝;居住建筑太陽能—地源熱泵聯(lián)合供暖特性的研究[D];上海工程技術(shù)大學(xué);2016年
4 王威;太陽能—雙熱源熱泵供暖系統(tǒng)優(yōu)化研究[D];西南交通大學(xué);2016年
5 段琪;石河子地區(qū)太陽能通風(fēng)墻主要集熱部件的熱性能研究[D];石河子大學(xué);2016年
6 項(xiàng)東昊;北方地區(qū)封閉式豬舍新型太陽能通風(fēng)換熱器的研究[D];吉林農(nóng)業(yè)大學(xué);2016年
7 朱姝妍;太陽能技術(shù)與高層辦公商業(yè)綜合體一體化設(shè)計(jì)[D];天津大學(xué);2014年
8 劉國濤;地源熱泵與太陽能聯(lián)合應(yīng)用的研究[D];山東大學(xué);2016年
9 李e,
本文編號(hào):1975112
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1975112.html