定量施肥機控制系統(tǒng)研究
本文選題:施肥機 + 螺旋式排肥器; 參考:《西南大學(xué)》2017年碩士論文
【摘要】:施化肥是增加土壤養(yǎng)分,改善作物生長發(fā)育條件的重要措施,在我國西南山地丘陵地區(qū),由于地理環(huán)境因素,大中型施肥機械難以使用。常用的小型施肥機排肥器有外槽輪式、水平螺旋式等;肥料的物理特性對此類排肥器的排肥性能影響較大,施肥作業(yè)時容易出現(xiàn)肥料架空、堵塞等引起的“斷條”即漏施現(xiàn)象。于是,長期以來農(nóng)作物的施肥仍然以人工施肥為主,存在勞動強度大、施肥量隨意性大、均勻性差等問題。因此,有必要研制一種施肥均勻性好,適用于山地丘陵地區(qū)使用的定量施肥機。為了提高施肥的利用率,降低生產(chǎn)成本,促進(jìn)農(nóng)業(yè)的可持續(xù)發(fā)展,結(jié)合我國西南丘陵地區(qū)施肥作業(yè)現(xiàn)狀,論文對定量施肥機控制系統(tǒng)進(jìn)行了設(shè)計與研究。采用豎直螺旋式排肥器作為定量施肥機的排肥機構(gòu),利用霍爾式傳感器進(jìn)行施肥機的行走速度檢測,將霍爾傳感器的脈沖信號經(jīng)過濾波整形后得到規(guī)則的矩形波信號,設(shè)計完成以單片機為主控芯片的控制系統(tǒng),利用脈沖寬度調(diào)制(Pulse Width Modulation,PWM)調(diào)節(jié)排肥器驅(qū)動電機的端電壓,從而實現(xiàn)定量施肥機精確排肥。根據(jù)施肥機性能設(shè)計要求,結(jié)合理論分析,對豎直螺旋式排肥器進(jìn)行控制策略研究,通過對螺旋式排肥器的運動參數(shù)分析,建立控制系統(tǒng)的數(shù)學(xué)模型;經(jīng)過排肥試驗,初步擬合控制系統(tǒng)數(shù)學(xué)模型參數(shù),得出排肥器的排肥量與轉(zhuǎn)速之間的線性關(guān)系;采用直流減速電機作為排肥器的驅(qū)動機構(gòu),根據(jù)直流減速電機的外特性,對電機的輸出轉(zhuǎn)速采用閉環(huán)控制,通過實時采集排肥器的轉(zhuǎn)速信號,對比反饋轉(zhuǎn)速信號與目標(biāo)轉(zhuǎn)速,實時修正排肥器的轉(zhuǎn)速。在硬件電路設(shè)計方面,采用PIC18F13K22作為主控芯片,采用N溝道MOSFET管FDN359AN和P溝道MOSFET管FDN360P作為電機控制的功率開關(guān)管。在Protel軟件中完成控制系統(tǒng)的硬件電路繪制,在MPLAB集成開發(fā)環(huán)境中完成驅(qū)動程序的編寫與調(diào)試。同時,為保證整個系統(tǒng)運行的可靠性,在硬件電路和軟件程序上都進(jìn)行了抗干擾設(shè)計。對定量施肥機進(jìn)行了室外施肥均勻性試驗和田間施肥試驗。試驗結(jié)果表明,所設(shè)計的定量施肥機控制系統(tǒng)達(dá)到設(shè)計要求。在正常作業(yè)速度為0.5-1.2m/s、施肥量為300-750kg/hm2(20-50kg/畝)的試驗范圍內(nèi),均勻性試驗的最大變異系數(shù)為7.06%,田間試驗施肥量的最大偏差為6.76%。能夠滿足施肥機對均勻性和施肥量偏差的質(zhì)量評價技術(shù)規(guī)范(NY/T1003-2006)的要求。
[Abstract]:Fertilizer application is an important measure to increase soil nutrients and improve crop growth and development conditions. In the mountainous and hilly areas of southwest China, it is difficult to use large and medium-sized fertilization machinery due to geographical environment. The common small fertiliser has external groove wheel type, horizontal spiral type and so on, the physical characteristics of fertilizer have a great influence on the fertilizer discharge performance of this kind of fertiliser, the fertilizer overhead is easy to occur in the fertilization operation, and the "broken strip" phenomenon caused by blockage is the phenomenon of leakage. Therefore, for a long time, the fertilization of crops is still dominated by artificial fertilization, which has many problems, such as high labor intensity, large amount of random fertilization, poor uniformity and so on. Therefore, it is necessary to develop a kind of quantitative fertilization machine which has good uniformity and is suitable for use in mountainous and hilly areas. In order to improve the utilization rate of fertilizer, reduce the production cost and promote the sustainable development of agriculture, combined with the present situation of fertilization in the southwest hilly area of China, the paper designs and studies the control system of quantitative fertilization machine. The vertical spiral fertiliser is used as the fertiliser's fertiliser, and the Hall sensor is used to detect the walking speed of the fertiliser. After filtering and shaping the pulse signal of Hall sensor, the regular rectangular wave signal is obtained. The control system with single chip microcomputer as the main control chip is designed and completed. Pulse Width Modulation Modulation (PWM) is used to adjust the terminal voltage of the motor driven by the fertiliser, so as to realize the accurate fertiliser discharge. According to the performance design requirements of fertilization machine, combined with theoretical analysis, the control strategy of vertical spiral fertiliser was studied. The mathematical model of the control system was established by analyzing the motion parameters of the helical fertiliser. The mathematical model parameters of the control system are preliminarily fitted to obtain the linear relationship between the fertiliser discharge quantity and the rotational speed, the DC deceleration motor is used as the driving mechanism of the fertiliser, and according to the external characteristics of the DC deceleration motor, Closed-loop control is used to control the output speed of the motor. The speed signals of the fertiliser are collected in real time, the feedback speed signal and the target speed are compared, and the speed of the fertiliser is corrected in real time. In the aspect of hardware circuit design, PIC18F13K22 is used as main control chip, N channel MOSFET tube FDN359AN and P channel MOSFET tube FDN360P are used as motor controlled power switch. The hardware circuit of the control system is drawn in the Protel software, and the driver is written and debugged in the MPLAB integrated development environment. At the same time, in order to ensure the reliability of the whole system, the anti-interference design is carried out in the hardware circuit and software program. The field fertilization experiments and outdoor fertilization homogeneity tests were carried out on the quantitative fertilization machine. The experimental results show that the control system of the quantitative fertilization machine meets the design requirements. In the range of normal operation speed of 0.5-1.2 m / s and fertilizer amount of 300-750kg/hm2(20-50kg/ mu, the maximum coefficient of variation of uniformity test was 7.06, and the maximum deviation of fertilization amount in field experiment was 6.76%. It can meet the requirement of NYR / T1003-2006.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S224.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁茂強;梁世盛;王力;喬鳳斌;郭立杰;;采用磁編碼器的直流電機控制系統(tǒng)設(shè)計及試驗[J];自動化儀表;2016年08期
2 趙占一;孟文俊;孫曉霞;蔣權(quán);張立勇;;垂直螺旋輸送機中顆粒速度的分布[J];過程工程學(xué)報;2015年06期
3 吳清分;;國外施肥機和植保機發(fā)展新動向[J];當(dāng)代農(nóng)機;2015年04期
4 陳雄飛;羅錫文;王在滿;張明華;胡煉;楊文武;曾山;臧英;韋后定;鄭樂;;兩級螺旋排肥裝置的設(shè)計與試驗[J];農(nóng)業(yè)工程學(xué)報;2015年03期
5 苑進(jìn);劉勤華;劉雪美;張?zhí)?張曉輝;;多肥料變比變量施肥過程模擬與排落肥結(jié)構(gòu)優(yōu)化[J];農(nóng)業(yè)機械學(xué)報;2014年11期
6 金國強;;有刷直流電機的數(shù)學(xué)模型及參數(shù)測量方法[J];大學(xué)物理;2014年01期
7 蔣恩臣;蘇旭林;王明峰;熊磊明;趙創(chuàng);許細(xì)微;;生物質(zhì)連續(xù)熱解反應(yīng)裝置的變螺距螺旋輸送器設(shè)計[J];農(nóng)業(yè)機械學(xué)報;2013年02期
8 梁文甲;胡曉麗;陳艷輝;袁洪印;;小型深松施肥機變量施肥機構(gòu)參數(shù)控制研究[J];安徽農(nóng)業(yè)科學(xué);2012年22期
9 張志雁;牧振偉;楊力行;;垂直螺旋管道內(nèi)單顆粒運動受旋轉(zhuǎn)科氏力影響的試驗研究[J];長江科學(xué)院院報;2012年05期
10 偉利國;張小超;苑嚴(yán)偉;劉陽春;李卓立;;2F-6-BP1型變量配肥施肥機的研制與試驗[J];農(nóng)業(yè)工程學(xué)報;2012年07期
相關(guān)博士學(xué)位論文 前1條
1 何鵠環(huán);永磁有刷直流電動機電磁振動與噪聲的分析[D];上海交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 吳金林;雙變量施肥機結(jié)構(gòu)及液壓調(diào)控系統(tǒng)設(shè)計[D];石河子大學(xué);2014年
2 李潔;有機肥施肥機構(gòu)設(shè)計與試驗研究[D];湖南農(nóng)業(yè)大學(xué);2014年
3 張捷美;基于物料轉(zhuǎn)速徑向變化的垂直螺旋輸送過程研究[D];武漢理工大學(xué);2013年
4 陳敏;垂直螺旋輸送槽內(nèi)物料顆粒群力學(xué)特性研究[D];武漢理工大學(xué);2013年
5 任益敏;混合變量施肥機電子控制系統(tǒng)的研究[D];南京農(nóng)業(yè)大學(xué);2012年
6 周雪松;電動自行車用24V雙轉(zhuǎn)子有刷減速輪轂直流電機的研制[D];南京農(nóng)業(yè)大學(xué);2009年
7 鄭磊;基于GPS的精確農(nóng)業(yè)自動變量施肥控制系統(tǒng)的研究[D];吉林大學(xué);2009年
8 胡豐收;多功能排肥性能檢測試驗臺的設(shè)計研究[D];河南農(nóng)業(yè)大學(xué);2009年
9 孫成;變量施肥機控制系統(tǒng)的研究[D];吉林農(nóng)業(yè)大學(xué);2008年
10 汪小鋒;基于PWM的直流無刷電機控制系統(tǒng)[D];南京理工大學(xué);2008年
,本文編號:1782254
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1782254.html