模擬復(fù)雜地形的變量噴霧靶標(biāo)特征激光檢測(cè)研究
本文關(guān)鍵詞:模擬復(fù)雜地形的變量噴霧靶標(biāo)特征激光檢測(cè)研究 出處:《江蘇大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 變量噴霧 靶標(biāo)激光檢測(cè) 復(fù)雜地形 姿態(tài)角偏移量 數(shù)據(jù)矯正與分析 三維重構(gòu)
【摘要】:噴霧靶標(biāo)的檢測(cè)是精密變量噴霧的重要環(huán)節(jié)。激光傳感器具有掃描速度快、測(cè)量精度高以及適用于室外環(huán)境等出色的性能,在精密變量噴霧的研究與應(yīng)用中備受關(guān)注。然而實(shí)際噴霧的過(guò)程中,復(fù)雜地形條件容易造成變量噴霧機(jī)實(shí)時(shí)傳感器檢測(cè)靶標(biāo)特征出現(xiàn)偏差。本文研究的主要目標(biāo)就是探索如何降低激光傳感器姿態(tài)角的偏移對(duì)噴霧靶標(biāo)檢測(cè)的影響,從而獲取精確的噴霧靶標(biāo)外形尺寸信息以及三維重構(gòu)圖像。首先研究了所選用的二維激光掃描傳感器的檢測(cè)原理以及靶標(biāo)激光檢測(cè)數(shù)據(jù)的獲取與三維重構(gòu)的方法。在此基礎(chǔ)上,利用直線滑臺(tái)靶標(biāo)激光檢測(cè)平臺(tái)設(shè)計(jì)了靶標(biāo)激光檢測(cè)試驗(yàn),通過(guò)試驗(yàn)驗(yàn)證了所選用的激光傳感器的優(yōu)良性能以及靶標(biāo)三維重構(gòu)方法的有效性。然后研究了模擬復(fù)雜地形的直線滑臺(tái)靶標(biāo)激光檢測(cè)與矯正。利用直線滑臺(tái)靶標(biāo)激光檢測(cè)平臺(tái),通過(guò)改變激光傳感器的三維安裝角度模擬復(fù)雜路況,分別針對(duì)激光傳感器存在固定的橫滾角、偏航角和俯仰角的情況,提出了極坐標(biāo)值與三角函數(shù)重新匹配、深度值系數(shù)矯正以及檢測(cè)幀與檢測(cè)點(diǎn)重新組合等3種姿態(tài)角偏移矯正方法,并且設(shè)計(jì)試驗(yàn)驗(yàn)證了激光傳感器3種姿態(tài)角偏移單一固定存在以及復(fù)合固定存在時(shí)矯正方法的有效性。試驗(yàn)結(jié)果顯示樹(shù)形雕花板的寬度、高度以及樹(shù)冠高度等尺寸相對(duì)誤差均小于5%,仿真樹(shù)的相關(guān)參數(shù)相對(duì)誤差均小于10%,矯正后的三維重構(gòu)圖像與矯正前相比有較大改善,滿足變量噴霧檢測(cè)的精度要求。最后研究了融合動(dòng)態(tài)車(chē)體姿態(tài)角偏移數(shù)據(jù)的車(chē)載激光靶標(biāo)檢測(cè)與矯正。本文基于慣性測(cè)量單元與UTM-30LX型激光傳感器搭建了車(chē)載激光靶標(biāo)檢測(cè)平臺(tái),慣性測(cè)量單元實(shí)時(shí)獲取車(chē)體的偏航角、俯仰角及橫滾角。根據(jù)利用試驗(yàn)車(chē)動(dòng)態(tài)變化的姿態(tài)角偏移數(shù)據(jù)矯正靶標(biāo)激光檢測(cè)數(shù)據(jù)的思想,提出了車(chē)體橫滾角、俯仰角以及偏航角分別動(dòng)態(tài)存在時(shí)靶標(biāo)激光檢測(cè)數(shù)據(jù)的矯正方法,分別為融合橫滾角的極坐標(biāo)值與三角函數(shù)重新匹配法、分段融合俯仰角平均值的檢測(cè)幀與檢測(cè)點(diǎn)重新組合法以及融合偏航角平均值的深度值系數(shù)矯正法。然后設(shè)計(jì)試驗(yàn)驗(yàn)證了俯仰角單一動(dòng)態(tài)存在、俯仰角和橫滾角復(fù)合動(dòng)態(tài)存在以及復(fù)雜地形三種情況下激光檢測(cè)數(shù)據(jù)矯正方法的有效性。試驗(yàn)結(jié)果顯示矯正后靶標(biāo)的三維重構(gòu)圖像與矯正前相比有較大改善,且長(zhǎng)方體柜子的寬度、高度以及仿真樹(shù)的寬度、高度和樹(shù)冠高度相對(duì)誤差均小于10%,矯正效果良好,驗(yàn)證了矯正方法的有效性。本文根據(jù)復(fù)雜地形條件對(duì)靶標(biāo)激光檢測(cè)的影響,研究了激光傳感器存在固定姿態(tài)角偏移以及動(dòng)態(tài)姿態(tài)角偏移的靶標(biāo)檢測(cè)與矯正,為實(shí)際變量噴霧靶標(biāo)檢測(cè)環(huán)節(jié)提供了一定的理論與試驗(yàn)基礎(chǔ)。
[Abstract]:The detection of spray target is an important part of precision variable spray. Laser sensor has the advantages of high scanning speed, high measuring precision and being suitable for outdoor environment. In the research and application of precision variable spray, however, in the process of actual spray. Complex terrain conditions can easily lead to the deviation of target characteristics of variable sprayer real-time sensor detection. The main goal of this paper is to explore how to reduce the impact of laser sensor attitude angle on spray target detection. In order to obtain accurate shape information of spray target and three-dimensional reconstruction image. Firstly, the detection principle of the selected two-dimensional laser scanning sensor and the method of obtaining laser detection data and 3D reconstruction of target laser detection data are studied. On this basis. The laser detection test of the target is designed by using the laser detection platform of the linear slide platform. The excellent performance of the selected laser sensor and the effectiveness of the 3D reconstruction method of the target are verified by experiments. Then the laser detection and correction of the linear slide target simulating complex terrain are studied. Laser detection platform. By changing the 3D installation angle of the laser sensor to simulate the complex road conditions, aiming at the situation that the laser sensor has fixed roll angle, yaw angle and pitch angle, a new matching between the polar coordinates and the trigonometric function is proposed. Three correction methods of attitude angle deviation are depth coefficient correction and detection frame and detection point recombination. The experimental results verify the effectiveness of the three methods for correcting the laser sensor when the attitude angle offset is single and the composite fixation exists. The experimental results show the width of the tree-shaped engraved plate. The relative error of height and crown height is less than 5, and the relative error of simulation tree is less than 10. The corrected 3D reconstructed image is better than that before correction. Finally, the vehicle laser target detection and correction based on inertial measurement unit and UTM-30LX laser sensor are studied. A vehicle laser target detection platform is built. The inertia measurement unit can get the yaw, pitch angle and roll angle of the vehicle in real time. According to the idea of correcting the target laser detection data by using the dynamic attitude angle deviation data of the test vehicle, the rolling angle of the car body is put forward. When the pitch angle and yaw angle exist dynamically, the correction method of laser detection data of target is the polar coordinate value of fusion roll angle and trigonometric function rematch method respectively. The method of detecting frame and detection point recombination and the depth coefficient correction method of fusion yaw angle mean value are combined by subsection fusion pitch angle average. Then the design experiment verifies the single dynamic existence of pitch angle. The experimental results show that the 3D reconstructed image of the target after correction is better than that before correction under the condition of composite dynamic of pitch angle and roll angle and complex terrain. The relative errors of the width, height and the width, height and crown height of the cuboid cabinet are less than 10, and the correction effect is good. The effectiveness of the correction method is verified. According to the influence of complex terrain conditions on laser detection of target, the detection and correction of laser sensor with fixed attitude angle migration and dynamic attitude angle migration are studied in this paper. It provides a theoretical and experimental basis for the actual variable spray target detection.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:S49;TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈躍;夏偉;劉慧;李寧;;激光傳感器在噴霧靶標(biāo)檢測(cè)中的研究應(yīng)用[J];農(nóng)業(yè)現(xiàn)代化研究;2017年02期
2 易勇帆;欒偉;王欽若;汪俊嶺;王磊;;基于STM32的伺服電機(jī)控制系統(tǒng)設(shè)計(jì)[J];工業(yè)控制計(jì)算機(jī);2017年02期
3 劉紅艷;張明偉;魏純;;基于ARM和STM32的樹(shù)苗無(wú)線灌水智能控制系統(tǒng)設(shè)計(jì)[J];農(nóng)機(jī)化研究;2017年01期
4 劉慧;李寧;沈躍;徐慧;;模擬復(fù)雜地形的噴霧靶標(biāo)激光檢測(cè)與三維重構(gòu)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年18期
5 張波;翟長(zhǎng)遠(yuǎn);李瀚哲;楊碩;;精準(zhǔn)施藥技術(shù)與裝備發(fā)展現(xiàn)狀分析[J];農(nóng)機(jī)化研究;2016年04期
6 朱立明;杜雙偉;李海;徐寅林;;基于捷聯(lián)慣性導(dǎo)航的室內(nèi)定位系統(tǒng)研究[J];南京師范大學(xué)學(xué)報(bào)(工程技術(shù)版);2016年01期
7 劉慧;夏偉;沈躍;李寧;徐慧;;基于實(shí)時(shí)傳感器的精密變量噴霧發(fā)展概況[J];中國(guó)農(nóng)機(jī)化學(xué)報(bào);2016年03期
8 白秀軍;;基于ARM系統(tǒng)的四旋翼飛行器設(shè)計(jì)與實(shí)現(xiàn)[J];工業(yè)控制計(jì)算機(jī);2016年02期
9 李哲;田建艷;鄭晟;王芳;張小龍;;基于MPU6050和HMC5883L的豬的姿態(tài)檢測(cè)[J];江蘇農(nóng)業(yè)科學(xué);2016年02期
10 李瀚哲;翟長(zhǎng)遠(yuǎn);張波;楊碩;;果園噴霧靶標(biāo)探測(cè)技術(shù)現(xiàn)狀分析[J];農(nóng)機(jī)化研究;2016年02期
相關(guān)碩士學(xué)位論文 前3條
1 夏偉;激光傳感器三維靶標(biāo)檢測(cè)系統(tǒng)的設(shè)計(jì)與研究[D];江蘇大學(xué);2016年
2 王曾蘭;基于二維激光雷達(dá)數(shù)據(jù)的三維重建研究[D];東北大學(xué);2013年
3 李慧凱;基于激光掃描的三維重構(gòu)關(guān)鍵技術(shù)研究[D];燕山大學(xué);2013年
,本文編號(hào):1372819
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1372819.html