氮鉀配施對龍粳31產(chǎn)量和品質的影響
本文關鍵詞:氮鉀配施對龍粳31產(chǎn)量和品質的影響 出處:《黑龍江八一農(nóng)墾大學》2017年碩士論文 論文類型:學位論文
【摘要】:本試驗于2016年在黑龍江省勝利農(nóng)場第七管理區(qū)試驗田進行,以龍粳31為供試品種,以本田氮、鉀不同施入量為處理,采用隨機區(qū)組設計,研究氮肥及鉀肥不同施肥量對龍粳31生育動態(tài)、群體質量、產(chǎn)量和品質的影響,達到為寒地水稻合理施肥提供理論依據(jù)和技術支撐的目的。研究主要結果如下:氮肥施用量相同時,適量鉀能夠增加植株高度,當鉀肥施用過量時對株高有抑制作用。當?shù)屎外浄适┯镁^常規(guī)施肥量時,植株株高提升明顯。鉀肥施用量一定的條件下,株高隨氮肥用量的增加而升高。處理N_5K_5株高最高(113.67cm)。氮肥一定量時齊穗期莖數(shù)增多,氮肥超量時齊穗期莖數(shù)減少。分蘗末期處理N_5K_5莖數(shù)最多為19個/穴,齊穗期處理N_5K_2最多為24.3個/穴。施用氮肥和鉀肥有利于提高水稻葉面積指數(shù)及干物質積累量,顯著高于對照區(qū)(N_3K_3),且鉀肥與氮肥存在明顯的互作效應,氮肥對葉面積指數(shù)及水稻干物質積累的影響大于鉀肥,葉面積指數(shù)最高處理N_5K_5(3.93),干物質積累齊穗期以N_5K_5最高(52.3g/穴)、成熟期以N_4K_4最高(96.7g/穴)。施氮量為N_1、N_2時,穗數(shù)隨鉀肥用量增加而升高,施氮量為N_3、N_4、N_5時,穗數(shù)隨鉀肥用量增加而先升高后降低。施鉀量為K_1、K_2時,穗數(shù)隨氮肥用量增加呈升高趨勢,施鉀量為K_3、K_4、K_5時,穗數(shù)隨氮肥用量增加而先升高后降低。氮肥用量一定時穗粒數(shù)隨鉀用量增加呈先升高后降低趨勢,鉀肥用量一定時穗粒數(shù)隨氮用量增加呈先升高后降低趨勢。施氮量為N_1、N_2、N_5時,結實率隨鉀肥用量增加呈先升高后降低趨勢,施氮量為N_3、N_4時,結實率隨鉀肥用量增加呈降低趨勢。不同氮鉀施肥量對水稻產(chǎn)量具有顯著影響。當施氮量為N_1、N_2時,水稻產(chǎn)量隨鉀肥施用量增加呈上升趨勢,當施氮量為N_3、N_4時,水稻產(chǎn)量隨鉀肥施用量增加呈先上升后降低趨勢,當施氮量為N_5時,水稻產(chǎn)量隨鉀肥施用量增加呈降低趨勢。當施鉀量為K_1時,產(chǎn)量隨氮的增加呈升高趨勢,當施鉀量為K_2、K_3、K_4、K_5時,產(chǎn)量隨氮的增加呈先升高后降低趨勢,處理N_4K_4產(chǎn)量最高(11615.81kg/hm~2)。氮肥或鉀肥對水稻食味評分的影響均達到顯著水平,且存在極顯著的互作效應,氮鉀互作下的食味評分以處理N_3K_4最高,即氮肥76.56 kg/hm~2,鉀肥78.75kg/hm~2時為最佳配置,食味達到85.2,較不施肥提高10.5%,差異達顯著水平。氮鉀肥用量對水稻生長發(fā)育和產(chǎn)量、品質有重要影響,在供試條件下,高產(chǎn)處理為氮肥76.56 kg/hm~2-114.84 kg/hm~2、鉀肥52.5kg/hm~2-78.75 kg/hm~2;優(yōu)質處理為:氮肥76.56kg/hm~2-114.84 kg/hm~2、鉀肥78.75 kg/hm~2-105 kg/hm~2;高產(chǎn)優(yōu)質處理為:氮肥114.84kg/hm~2,鉀肥78.75 kg/hm~2。
[Abstract]:The experiment was carried out in 7th management area of Shengli Farm in Heilongjiang Province on 2016. Longjing 31 was used as the tested variety and Honda nitrogen and potassium were treated with different amounts of nitrogen and potassium. The random block design was adopted. The effects of nitrogen and potassium fertilizer on the growth dynamics, population quality, yield and quality of Longjing 31 were studied. The main results are as follows: when the amount of nitrogen fertilizer is the same, appropriate potassium can increase plant height. The plant height was inhibited when the potassium fertilizer was applied too much. When the amount of nitrogen and potassium fertilizer was higher than that of the conventional fertilizer, the plant height was increased obviously, and the plant height was increased obviously under the condition of certain amount of potassium fertilizer. The plant height increased with the increase of nitrogen application rate. The highest plant height was 113.67 cm / cm ~ (-1) in N _ 5K _ s _ 5. The number of stems at full heading stage increased with a certain amount of nitrogen fertilizer. The number of stems at full heading stage decreased when nitrogen fertilizer was overloaded, and the maximum number of stems per hole was 19 / hole in N _ s _ 5K _ S _ 5 at the end of tiller treatment. The maximum number of N _ 5K _ 2 was 24.3 / hole at full heading stage. Applying nitrogen and potassium fertilizer could increase the leaf area index and dry matter accumulation of rice, which was significantly higher than that of N _ 3K _ (3) in the control area. The effect of nitrogen fertilizer on leaf area index and dry matter accumulation of rice was greater than that on potash fertilizer. In the full heading stage of dry matter accumulation, the highest value of 52.3 g / hole was in Ns _ 5K _ 5 and 96. 7 g / d in N4KK _ 4 at maturity stage, and the N application amount was N _ 1 / N _ 2 when N _ 1 and N _ (2) were used. The number of spikes increased with the increase of potassium fertilizer application. When the N application rate was N _ 3N _ 4 and N _ (5), the number of ears increased first and then decreased with the increase of potassium fertilizer application, and K _ (1) and K _ (2) were applied at the time of K _ (1) and K _ (2). The number of spikelets increased with the increase of nitrogen application rate, and the amount of potassium applied was K _ s _ 3K _ 4 / K _ S _ 5. The number of panicles increased first and then decreased with the increase of nitrogen application, and the number of grains per spike increased first and then decreased with the increase of potassium application. The number of grains per spike increased first and then decreased with the increase of the amount of potassium fertilizer, and the seed setting rate increased first and then decreased with the increase of the amount of potassium fertilizer. The seed setting rate decreased with the increase of potassium application rate when N application rate was N _ 3 / N _ 4. Different nitrogen and potassium fertilizer rates had a significant effect on rice yield, and when N _ 2 was N _ (1) N _ (1) N _ (2) N _ (2). The yield of rice increased with the application of potassium fertilizer. When the amount of N applied was N _ 3 / N _ 4, the yield of rice increased first and then decreased with the increase of potassium application rate, and when the amount of N application was N _ 5, the yield of rice increased first and then decreased. The yield of rice decreased with the increase of potassium fertilizer application rate. When the potassium application amount was K _ (-1), the yield increased with the increase of nitrogen, and when K _ (2) was applied to K _ (2) / K _ (3) / K _ (3) / K _ (th), the yield increased with the increase of K _ (1). The yield increased first and then decreased with the increase of nitrogen, and the highest yield of N4Kap4 was 11615.81 kg / hm-1 路h ~ (2 +). The effect of nitrogen or potassium fertilizer on rice food taste score reached significant level. In addition, there was a significant interaction effect. The food taste score of N _ 3K _ (4) was the highest in N _ 3K _ (4), that is, 76.56 kg/hm~2 of nitrogen fertilizer under the interaction of N ~ (2 +) and K _ (+). The best allocation of potassium fertilizer was 78.75 kg 路hm ~ (-1) 路hm ~ (-1) ~ 2:00, and the food taste reached 85.2, which increased 10.55.The difference was significant compared with that of no fertilizer application. The application of nitrogen and potassium fertilizer on the growth and yield of rice was significant. The high yield treatment was 76. 56 kg/hm~2-114.84 kg/hm~2. Potassium fertilizer 52.5 kg / hmcr ~ (2) -78.75 kg 路h ~ (m-1) ~ (2); The high quality treatments were as follows: nitrogen 76.56 kg / hm ~ (-1) 2-114.84 kg / hm ~ (2), potassium 78.75 kg/hm~2-105 路kg ~ (-1) 路hm ~ (2) ~ (-1); The high yield and good quality treatments were as follows: nitrogen fertilizer 114.84 kg / hmc-2, potassium fertilizer 78.75 kg / hmc-2.
【學位授予單位】:黑龍江八一農(nóng)墾大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S511.22
【相似文獻】
相關期刊論文 前10條
1 陽清元,丁洪濤,何金武,陳弟軍,劉亮飛;湘南煙區(qū)氮鉀在基追肥中的比例研究[J];湖南農(nóng)業(yè)科學;2004年06期
2 朱金明;;氮鉀對小麥產(chǎn)量和品質影響的研究進展[J];農(nóng)技服務;2007年12期
3 李共福;水稻品種對氮鉀的反應及其與肥料效益的關系[J];土壤肥料;1987年02期
4 蔣衛(wèi)杰,鄭光華;氮鉀互作對蔬菜生長發(fā)育的影響[J];中國蔬菜;1992年02期
5 馬曉燕,芮根華,葉寶良,徐愛琴;氮鉀配比對水稻產(chǎn)量的效應[J];安徽農(nóng)業(yè)科學;2002年03期
6 夏麗華;夏興波;夏伍孝;李小祥;;“南粳45”不同氮鉀比例試驗研究[J];上海農(nóng)業(yè)科技;2011年02期
7 劉自紅;蘇海鵬;湯利;;間作環(huán)境中小麥氮鉀養(yǎng)分吸收利用與干物質累積的動態(tài)變化特征[J];云南農(nóng)業(yè)大學學報;2007年06期
8 宋春鳳,徐坤;氮鉀配施對芋頭產(chǎn)量和品質的影響[J];植物營養(yǎng)與肥料學報;2004年02期
9 梁繼旺;祝金虹;;氮鉀二元復混肥在蔬菜上的肥效試驗[J];現(xiàn)代農(nóng)業(yè)科技;2009年15期
10 陳平;郭陽;喻春明;王延周;陳繼康;譚龍濤;熊和平;;氮鉀配施對中苧2號植株鮮重及原麻產(chǎn)量的影響[J];湖南農(nóng)業(yè)科學;2013年03期
相關會議論文 前1條
1 李錄久;王家嘉;高杰軍;吳萍萍;姚殿立;丁楠;;氮鉀配施對生姜生長和砂姜黑土養(yǎng)分狀況的影響[A];面向未來的土壤科學(中冊)——中國土壤學會第十二次全國會員代表大會暨第九屆海峽兩岸土壤肥料學術交流研討會論文集[C];2012年
相關重要報紙文章 前4條
1 中化化肥高級顧問、中國農(nóng)業(yè)大學教授 曹一平;農(nóng)作物氮鉀營養(yǎng)平衡很重要[N];農(nóng)民日報;2009年
2 中化化肥高級顧問、中國農(nóng)業(yè)大學教授 王興仁;雨澇過后作物怎樣管理[N];農(nóng)民日報;2010年
3 ;山藥如何施肥[N];山西科技報;2009年
4 中化化肥高級顧問、中國農(nóng)業(yè)大學教授 王興仁;如何合理選用二銨和復合肥[N];農(nóng)民日報;2010年
相關碩士學位論文 前7條
1 李陶;氮、鉀及氮鉀互作對不同甘薯產(chǎn)量品質和養(yǎng)分吸收的影響[D];山東農(nóng)業(yè)大學;2017年
2 張振東;氮鉀配施對龍粳31產(chǎn)量和品質的影響[D];黑龍江八一農(nóng)墾大學;2017年
3 陳志攀;不同氮鉀配比對直播早稻生長發(fā)育和抗倒伏性的影響[D];江西農(nóng)業(yè)大學;2012年
4 唐浩;小麥和玉米生長過程中氮鉀水互作效應研究[D];中國農(nóng)業(yè)科學院;2008年
5 武鵬;吉林省東部高產(chǎn)玉米氮鉀養(yǎng)分互作效應研究[D];吉林農(nóng)業(yè)大學;2012年
6 牛麗紅;溫室黃瓜栽培氮鉀優(yōu)化配比的篩選及對抗病性的影響[D];河南科技大學;2012年
7 于洪波;氮鉀營養(yǎng)對蔬菜累積草酸的調控及其機理研究[D];浙江大學;2002年
,本文編號:1361709
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1361709.html