二氫楊梅素通過抑制PPARγ磷酸化改善胰島素抵抗的作用及機制研究
[Abstract]:Diabetes is a chronic non communicable disease which seriously endangers human health. The incidence of type 2 diabetes in China is increasing year by year. It has become a major diabetes country. The study of diabetes prevention is a long way to go. Insulin resistance is one of the important mechanisms of the onset of type 2 diabetes. Improving insulin resistance is a clinical treatment for diabetes. Major strategies. Phytochemicals have many biological activities, such as anti-inflammatory, antioxidant and anticancer, which have important application value in the prevention and treatment of diseases. Among them, the flavonoids have attracted much attention because of their hypoglycemic and low toxic and side effects, but the specific mechanisms are still unknown. Peroxisome proliferators are activated by (peroxisome prolif). Erator-activated receptor, PPAR) - gamma is an important target in the clinical research and development of antidiabetic drugs. The insulin sensitizer (Thiazolidinedione, TZD), such as Rosiglitazone, ROSI, has a good hypoglycemic effect, but a complete agonist of the most PPAR gamma can lead to a complete agonist of PPAR gamma. The study found that flavonoids can reduce the side effects of many rosiglitazone drugs, such as lipid, obesity, and edema, by partially activating PPAR gamma. Two Dihydromyricetin (DHM), as a kind of flavonoid compound, has anti-inflammatory, antioxidant, anti alcohol poisoning, and swelling resistance. Many biological activities, such as tumor, have also been reported to have hypoglycemic effect, but the specific mechanism remains to be further elucidated. Studies have found that the phosphorylation of PPAR gamma is closely related to the occurrence of insulin resistance. The inhibition of the phosphorylation of serine at the PPAR gamma 273 site is the main mechanism of PPAR gamma ligand playing the hypoglycemic effect. Protein kinase (Extracellular Regulating Kinase, ERK) and cyclin dependent kinase (Cyclin-dependent Kinase, CDK5) can mediate phosphorylation of PPAR gamma 273 site, leading to the occurrence of obesity related insulin resistance. Inhibition of the MEK/ERK pathway can significantly increase the insulin sensitivity of animals. Inhibition of MEK/ERK signaling pathway to promote apoptosis of tumor cells. Based on the theoretical reasoning of structural effect relationship and the docking of DHM to the ligand binding area of PPAR gamma, we speculate that the flavonoid compound DHM may improve the islet by regulating MEK/ERK, inhibiting the phosphorylation of the PPAR gamma 273 site and thus improving the islets of the islets. Zucker Diabetic Fatty (ZDF) diabetic model rats and 3T3-L1 adipocytes were divided into groups of.1. experimental groups: healthy control group ZL rats, ZDF pairs, DHM (50mg/kg), DHM (100mg/kg) group, 3T3-L1 group, The group of rosiglitazone (4mg/kg) group was administered daily for 8 weeks. The body weight was recorded every other day, daily intake of food and fasting blood glucose, insulin, glucagon level, serum lipid levels, adiponectin and FGF21 levels, oral glucose tolerance test (OGTT) for the first seventh weeks, and eighth weeks of insulin tolerance test (ITT).2. intervention for seventh weeks were performed. Liver, pancreas, kidney, and adipose tissue were stained with oil and red O after the CT imaging analysis of the body composition of the rat body. The expression of PPAR gamma protein in the adipose tissue of ZDF rats was determined by histochemical staining or immunohistochemical staining with.Western Blot, and the phosphorylated.4. was induced by dexamethasone to establish the insulin of 3T3-L1 adipocytes. Resistance model, analysis of the effect of DHM on the differentiation of cells and the effect of sugar uptake..ELISA detected the secretion of adipokine by.5.Western Blot and the level of PPAR gamma phosphorylation in adipocytes and the protein expression level of the upstream regulated kinase ERK/CDK5. The PPAR gamma inhibitor GW9662 was used to block the PPAR gamma activity and to observe the uptake of sugar in DHM to the fat cells and the glucose uptake by DHM. The effect of adiponectin secretion; blocking ERK activity with MEK inhibitor PD98059 and comparing the effect of DHM and MEK inhibitors. Main experimental results: 1.DHM reduced fasting blood glucose in ZDF rats and increased insulin sensitivity. In the high dose (100mg/kg and 200mg/kg) DHM group, the fasting blood sugar of the rats was significantly lower than that in the ZDF control group, and the low dose (50 mg/kg) was maintained. The fasting blood glucose in rats was lower than 10mM to seventh weeks. The oral glucose tolerance test (Oral Glucose Tolerance Test, OGTT) at seventh weeks showed that the blood glucose values of the 3 DHM groups after oral glucose 30min were significantly lower than those in the ZDF control group; eighth weeks of insulin tolerance test (Insulin Tolerance Test) showed that the high dose (Insulin Tolerance Test) group was in the high dose group. After the injection of insulin 30min, the blood glucose was significantly lower than that of the ZDF control group.2.DHM to improve the blood lipid level of the diabetic rats, and no increase of the body weight.DHM significantly decreased the level of serum TG and LDL-C and increased the level of HDL-C. At the end of the eighth weekend, the weight gain of DHM group was lower than that of the rosiglitazone group, and the liver and pancreas of diabetic rats were lower than that of the rosiglitazone group. The protective effect of.DHM and kidney can reduce the lipid deposition of liver cells, maintain the normal form of hepatic lobule, slow down the liver fat like changes, increase the islet volume, maintain the integrity of the islet, improve the insulin content of beta cells, reduce the infiltration of renal interstitial inflammatory cells, reduce the glomerular mesangial matrix hyperplasia and reduce the fat of the diabetic rats by reducing the.4.DHM of the glomerular mesangial matrix, and reducing the fat of the diabetic rats. Tissue content reduced fat cell volume and increased adiponectin secretion. Body composition showed that DHM significantly reduced total fat and visceral fat content in rats compared with rosiglitazone. Fat tissue oil red O staining showed that ZDF control rats were subcutaneous, visceral adipocyte volume increased significantly, DHM decreased fat cell volume, and subcutaneous, visceral fat was thin. There was no significant difference between the cell size and the ZL health control group. The serum adiponectin level was detected at week 0,4,8, and the level of adiponectin in the ZDF control group decreased, while the DHM significantly increased the serum adiponectin level, and there was no significant difference between the.5. body and the ZL healthy control group. The results of Western Blot in both in vivo and in vitro showed that DHM inhibited adipose tissue and cells in the cells. PPAR gamma 273 site serine phosphorylation, and the ability of DHM to inhibit PPAR gamma phosphorylation is superior to rosiglitazone. In addition, DHM also significantly reduces the activity.6. regulating PPAR gamma phosphorylation of kinase ERK and CDK5 in the insulin resistance model established by dexamethasone in the insulin resistance model of dexamethasone. The dose dependence of DHM increases the sugar uptake and increase of cells significantly. Adipocytes secrete adiponectin and FGF21 level.PPAR gamma inhibitor GW9662 block DHM increase sugar uptake and increase the secretion of adiponectin. FGF21's ability.DHM shows the same as MEK inhibitor PD98059 to increase fat cell sugar uptake and promote division of secretin, FGF21, and both have synergistic effect. Conclusion: 1.DHM can be used. Reducing the fasting blood glucose, reducing insulin resistance and improving blood lipid levels in ZDF diabetic rats. In addition, DHM reduces liver lipid deposition, increases the volume and insulin content of pancreatic islets, alleviates the infiltration of renal interstitial inflammation and glomerular mesangial matrix hyperplasia. The study also shows that long-term use of DHM does not cause excessive increase in animal weight. In the.2. experiment, DHM reduced the body fat content of diabetic rats, reduced the volume of adipocyte and increased adipocyte adiponectin level. In vitro, the insulin resistance model of 3T3-L1 adipocytes was established by dexamethasone. It was found that DHM increased the glucose uptake ability of 3T3-L1 adipocytes in insulin resistance, and promoted adipocytes to secrete adiponectin and FG. F21.3. by regulating the MEK/ERK signaling pathway to inhibit PPAR gamma Ser273 phosphorylation is the main mechanism of DHM to reduce insulin resistance, and DHM and MEK inhibitors synergistically to increase the insulin sensitivity of adipocytes. To sum up, this study further revealed the molecular mechanism of two hydrogen myricetin (DHM) to improve insulin resistance, for the first time The inhibition of the phosphorylation of serine at PPAR gamma 273 site is the mechanism of DHM, which provides an important scientific basis for the application of rattan tea or its extract DHM in the prevention and control of clinical diabetes.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:R285.5
【相似文獻】
相關(guān)期刊論文 前10條
1 ;PPARγ phosphorylation mediated by JNK MAPK:a potential role in mac-rophage-derived foam cell formation[J];Acta Pharmacologica Sinica;2006年09期
2 任黔川;彭芝蘭;譚欣;;PPARγ在卵巢漿液性囊腺癌中的表達[J];重慶醫(yī)學(xué);2009年23期
3 張乾勇;PPAR的結(jié)構(gòu)與功能及其生物學(xué)作用[J];國外醫(yī)學(xué)(衛(wèi)生學(xué)分冊);2000年05期
4 白玉杰,牛丹,趙錦榮,張文紅,呂貫廷,閻小君;Rapid detection of PPAR_γ gene Pro12Ala polymorphism with fluorescence polarization in Chinese population[J];Journal of Medical Colleges of PLA;2003年03期
5 袁平戈;PPARα的主要功能是什么[J];中華肝臟病雜志;2003年05期
6 潘光棟;PPAR-γ及其配體在人體細胞的分子研究[J];職業(yè)衛(wèi)生與病傷;2003年02期
7 曹廷兵,葉治家,彭家和,鞏燕,黃剛;人PPARγ2 cDNA的克隆及其在大腸桿菌中的表達純化[J];第三軍醫(yī)大學(xué)學(xué)報;2004年01期
8 王剛,陳繼俊,倪沛洲;PPARα受體亞型與新藥研究[J];藥學(xué)進展;2004年01期
9 葉平;過氧化體增殖物激活型受體(PPAR)與心血管疾病[J];中華心血管病雜志;2004年07期
10 孫曙光,周智廣;PPARγ與1型糖尿病[J];國外醫(yī)學(xué).內(nèi)分泌學(xué)分冊;2005年02期
相關(guān)會議論文 前10條
1 ;Genetic polymorphisms of PPAR-γ,HHEX,PTPRD,KCNQ1,and SRR affect therapeutic efficacy of Pioglitazone in Chinese Patients with type 2 diabetes[A];傳承與發(fā)展,創(chuàng)湖南省生理科學(xué)事業(yè)的新高——湖南省生理科學(xué)會2011年度學(xué)術(shù)年會論文摘要匯編[C];2011年
2 ;Dynamic analysis and ligand binding affinity investigation of PPAR mutations[A];華東六省一市生物化學(xué)與分子生物學(xué)會2003年學(xué)術(shù)交流會論文摘要集[C];2003年
3 童南偉;;過氧化物酶增殖物激活受體(PPAR)a與脂質(zhì)代謝[A];全國首屆代謝綜合征的基礎(chǔ)與臨床專題學(xué)術(shù)會議論文匯編[C];2004年
4 王偉銘;章慧娣;劉峰;陳佳韻;陳楠;;PPARγ活化對腎間質(zhì)成纖維細胞的作用研究[A];2007年浙滬兩地腎臟病學(xué)術(shù)年會資料匯編[C];2007年
5 陳剛;林新富;梁繼興;林麗香;沈曉麗;;過氧化物酶體增殖物激活受體γ(PPARγ)基因多態(tài)性與老年男性骨質(zhì)疏松癥相關(guān)性研究[A];2008內(nèi)分泌代謝性疾病系列研討會暨中青年英文論壇論文匯編[C];2008年
6 陳剛;林新富;梁繼興;林麗香;沈曉麗;;過氧化物酶體增殖物激活受體γ(PPARγ)基因多態(tài)性與老年男性骨質(zhì)疏松癥相關(guān)性研究[A];2008中國醫(yī)師協(xié)會內(nèi)分泌代謝科醫(yī)師分會年會論文匯編[C];2008年
7 李潔;戴愛國;胡瑞成;朱黎明;王梅芳;;PPARγ影響γ-谷氨酰半胱氨酸合成酶活性及表達在大鼠慢性阻塞性肺疾病中的作用[A];中國生理學(xué)會第23屆全國會員代表大會暨生理學(xué)學(xué)術(shù)大會論文摘要文集[C];2010年
8 管又飛;;脂質(zhì)過氧化物體增殖物激活受體γ(PPAR γ)與糖尿病腎病[A];中華醫(yī)學(xué)會腎臟學(xué)分會2004年年會暨第二屆全國中青年腎臟病學(xué)術(shù)會議專題講座匯編[C];2004年
9 孫莉;尚進林;梁浩;程焱;;PPAR全激動劑對小鼠局灶性腦缺血再灌注損傷的保護作用[A];第十一屆全國神經(jīng)病學(xué)學(xué)術(shù)會議論文匯編[C];2008年
10 ;Endothelial PPARγmediates anti-inflammatory actions of rosiglitazone through dissociation of NF-κB[A];中國生理學(xué)會心血管生理學(xué)術(shù)研討會論文集[C];2011年
相關(guān)重要報紙文章 前10條
1 徐錚奎;發(fā)現(xiàn)PPAR拮抗劑[N];醫(yī)藥經(jīng)濟報;2012年
2 曾凡新邋林敏;PPAR激動劑類抗糖尿病藥研發(fā)喜憂參半[N];中國醫(yī)藥報;2007年
3 ;胰島素小常識[N];保健時報;2004年
4 ;胰島素抵抗,,怎么辦?[N];解放日報;2004年
5 中南大學(xué)湘雅二醫(yī)院老年病科副教授 陳化;什么是“胰島素抵抗”[N];健康報;2001年
6 張家慶 (教授);適度鍛煉身體改善胰島素抵抗[N];上海中醫(yī)藥報;2003年
7 本報記者 韓曉英;注射胰島素會成癮嗎[N];中國中醫(yī)藥報;2002年
8 張怡梅 劉 斌;惡性腫瘤與胰島素抵抗[N];中國中醫(yī)藥報;2003年
9 健康時報特約記者 陳錦屏;胖人易發(fā)“胰島素抵抗”[N];健康時報;2007年
10 殳雪怡;胰島素抵抗 有辦法“抵抗”嗎[N];家庭醫(yī)生報;2007年
相關(guān)博士學(xué)位論文 前10條
1 劉蕾;二氫楊梅素通過抑制PPARγ磷酸化改善胰島素抵抗的作用及機制研究[D];第三軍醫(yī)大學(xué);2017年
2 劉炳婷;SUMO特異性蛋白酶1調(diào)控脂肪形成的作用及分子機制[D];上海交通大學(xué);2014年
3 陳宏;巨噬細胞PPARγ對皮膚傷口愈合的作用研究[D];第三軍醫(yī)大學(xué);2015年
4 韓晶;PPARγ在腦缺血再灌注損傷和過氧化氫損傷中的調(diào)控機制研究[D];天津醫(yī)科大學(xué);2014年
5 張鷗;阿托伐他汀對動脈粥樣硬化患者外周血中PPAR γ的作用研究及相關(guān)炎癥因子與動脈粥樣硬化關(guān)系的建模分析[D];鄭州大學(xué);2016年
6 周毅;PPARγ介導(dǎo)的抗氧化機制在血管平滑肌細胞表型轉(zhuǎn)化中作用和機制研究[D];第三軍醫(yī)大學(xué);2016年
7 滕志朋;PPARβ/δ在大鼠蛛網(wǎng)膜下腔出血后早期腦損傷中的作用及其機制研究[D];重慶醫(yī)科大學(xué);2016年
8 佟強;PPARβ/δ激活在帕金森病中的保護作用及機制研究[D];南京醫(yī)科大學(xué);2016年
9 張花治;紅芪多糖對db/db小鼠糖尿病心肌病心肌保護作用及PPARγ/NF-κB信號通路的影響[D];甘肅中醫(yī)藥大學(xué);2017年
10 任凌云;T細胞PPARγ在心臟移植慢性排反應(yīng)中的作用及機制研究[D];華中科技大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 曹智麗;過氧化物酶增殖物激活受體α(PPARα)在大鼠酒精性肝病發(fā)生過程中的變化[D];河北醫(yī)科大學(xué);2015年
2 宋石;miR-27a通過靶向調(diào)控PPARγ對酒精誘導(dǎo)大鼠BMSC分化的影響[D];鄭州大學(xué);2015年
3 鄒佳楠;PPAR-γ在IgA腎病發(fā)生中的作用及其機理研究[D];復(fù)旦大學(xué);2014年
4 陶曉燕;PPAR δ激動劑和siRNA對大鼠骨髓基質(zhì)干細胞及成骨細胞分化和礦化的作用研究[D];安徽醫(yī)科大學(xué);2015年
5 于飛;新型PPARγ激動劑對人腎癌細胞增殖抑制及其機制的研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2015年
6 何修界;PPARγ激活對GDM小鼠胎盤脂肪酸運輸?shù)鞍妆磉_水平的影響[D];安徽醫(yī)科大學(xué);2015年
7 魏璇;PPARγ通過對RUVBL2表達調(diào)控影響脂聯(lián)素分泌的研究[D];華中農(nóng)業(yè)大學(xué);2015年
8 游潔冰;PPARγ激動劑、胰島素通過上調(diào)負性炎性因子TIPE2的表達抑制高糖、Aβ1-40引起的炎性反應(yīng)及神經(jīng)細胞調(diào)亡[D];山東大學(xué);2015年
9 劉常為;CTGF、COL-I、PPARγ在卵巢細胞外基質(zhì)的表達及與多囊卵巢綜合征的關(guān)系[D];暨南大學(xué);2015年
10 曹小潔;TLR4通過PPARγ下調(diào)ABCG1表達促進血管平滑肌細胞內(nèi)炎癥反應(yīng)及脂質(zhì)沉積[D];第三軍醫(yī)大學(xué);2015年
本文編號:2143587
本文鏈接:http://sikaile.net/shoufeilunwen/yxlbs/2143587.html