天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

右美托咪定調(diào)控miRNA-146a對COPD肺損傷的保護作用及機制

發(fā)布時間:2018-07-10 09:24

  本文選題:右美托咪定 + COPD; 參考:《南方醫(yī)科大學》2017年博士論文


【摘要】:研究背景及目的慢性阻塞性肺疾病(Chronic obstructive pulmonary disease,COPD)是一種以氣道、肺組織為損傷部位,以持續(xù)性氣流受限為特征的慢性支氣管炎和(或)肺氣腫,可進展為肺源性心臟病和呼吸衰竭的常見慢性肺部疾病,與氣道和肺組織對有毒氣體或有害顆粒產(chǎn)生異常炎性反應有關,具有較高發(fā)病率、致殘率和致死率,造成嚴重社會經(jīng)濟負擔。右美托咪定(Dexmedetomidine,Dex)是一種新型高選擇性α2腎上腺素能受體激動劑,是臨床常用麻醉輔助藥物。越來越多臨床研究表明,右美托咪定可通過抑制細胞凋亡、減輕炎癥反應和細胞氧化應激反應等機制對大腦、心臟、腎臟、肝臟及肺臟等多種器官起保護作用,其中,尤以肺臟保護作用最為明顯。miRNA-146a是近年來研究熱點,其可靶定TLR4/依賴MyD88途徑重要組成部分TNF受體相關因子6(TRAF6)和白細胞介素1受體相關激酶1(IRAK1),激活TLR4下游信號分子NF-κB,誘導大量炎癥因子,如IL-6、IL-1β、TNF-α等表達釋放,促進炎癥反應級聯(lián)放大,參與COPD炎癥相關發(fā)病過程,可能是COPD治療新靶點。由此,我們提出假設,右美托咪定可調(diào)控miRNA-146a對COPD肺損傷起到保護作用,其明確機制尚不清楚,是本課題研究重點,也是創(chuàng)新之處。本研究擬建立COPD大鼠模型,明確COPD大鼠肺損傷的病理基礎;闡明右美托咪定調(diào)控miRNA-146a對COPD肺損傷的保護作用及機制。第一部分COPD大鼠動物模型的建立及肺功能檢測與組織學檢查目的建立COPD肺損傷大鼠動物模型,通過觀察大鼠一般狀況、肺功能檢測、動脈血氣分析、支氣管肺泡灌洗液檢測以及肺組織病理學檢查,明確COPD肺損傷的病理基礎。方法選取16只SD大鼠并隨機分為2組,空白對照組(8只)和COPD組(8只),利用煙霧熏吸法建立大鼠COPD肺損傷模型,檢測肺功能指標如潮氣量(Tidal volume,TV)、最大呼氣流量(Peak expiratory flow,PEF)、50%肺活量最大呼氣流量(EF 50)、0.3秒用力呼氣容積(FEV0.3)和FEV0.3與用力肺活量(FVC)比值(FEV0.3/FVC);分析大鼠動脈血氧分壓(Pa02)和二氧化碳分壓(PaC02);收取大鼠支氣管肺泡灌洗液,并進行細胞計數(shù)、分類及蛋白質(zhì)含量檢測;取大鼠肺組織,行濕/干重比檢測和組織病理學檢查。結果1.一般狀況:空白對照組大鼠實驗過程中飲食、飲水正常,體重增長正常,毛發(fā)光滑,無明顯呼吸道癥狀;COPD組大鼠逐漸出現(xiàn)厭食、體重減輕、毛發(fā)暗黃脫落、活動減少,并出現(xiàn)噴嚏、喘息以及呼吸頻率增快等呼吸道癥狀。2.肺功能檢測:空白對照組大鼠TV為2.65±0.21 mL,PEF為38.55±0.24 mL/s,EF50 為 1.81±0.06 mL/s,FEV0.3 為 4.44±0.26 mL,而 FEV0.3/FVC 為 88.45±0.34%;COPD 組大鼠 TV 為 1.26±0.17 mL,PEF 為 17.61±0.35 mL/s,EF50 為 1.20±0.14 mL/s,FEV0.3 為 2.52±0.28 mL,FEV0.3/FVC 為 63.39±0.22%。COPD 組大鼠TV、PEF、EF 50、FEV0.3和FEV0.3/FVC均顯著低于空白對照組大鼠(0.05)。3.動脈血氣分析:空白對照組大鼠動脈血Pa02為89.35±4.30 mmHg,而COPD組動脈血Pa02為73.12±5.11 mmHg,COPD組大鼠動脈血Pa02顯著低于空白對照組大鼠動脈血Pa02(p0.05)。空白對照組大鼠動脈血PaCO2為43.22±5.19 mmHg,而 COPD 組動脈血 PaCO2 為 56.36±6.71 mmHg,COPD 組大鼠動脈血PaC02顯著高于空白對照組大鼠動脈血PaC02(p0.05)。4.支氣管肺泡灌洗液(BALF)細胞計數(shù)及蛋白濃度檢測:相比于空白對照組,COPD組大鼠BALF白細胞總數(shù)顯著增加(2.33±1.19×1 08/L vs.1.45±0.41 × 108/L,p0.05),且中性粒細胞比例顯著增高(17.4±7.2%vs.8.6±3.4%,p0.05),單核巨噬細胞比例顯著減低(73.3±2.6%vs.83.4±1.1%,p0.05),淋巴細胞比例無顯著性差異(8.1±2.0%vs.7.8±2.7%,p0.05)?瞻讓φ战M大鼠BALF蛋白含量為193.19±33.21 mg/L,COPD組大鼠BALF蛋白含量為363.93±41.38 mg/L,COPD組大鼠BALF蛋白含量顯著高于空白對照組大鼠BALF 蛋白含量(p0.05)。5.大鼠肺臟濕/干重比(W/D):空白對照組大鼠肺臟整體觀呈粉紅色,W/D為4.02±0.39,而COPD組大鼠肺臟整體觀色澤蒼白,肺表面可見大小不等肺大皰,W/D為5.41±1.03,COPD組大鼠肺臟W/D顯著高于空白對照組大鼠肺臟W/D(p0.05)。6.肺組織病理學變化:空白對照組肺組織切片鏡下可見支氣管上皮纖毛豐富、排列整齊、未見脫落,支氣管管壁規(guī)整、未見增厚及炎性細胞浸潤,管腔內(nèi)未見炎性滲出物,肺泡腔結構完整、未見明顯病理性擴大。COPD組肺組織切片鏡下可見支氣管纖毛柱狀上皮呈鋸齒樣增生增厚,纖毛脫落倒伏,粘膜下腺體增生肥大,炎性細胞廣泛浸潤,杯狀細胞增生,支氣管管腔內(nèi)粘液蓄積,管壁結締組織增生,平滑肌增厚,可見單核細胞和淋巴細胞浸潤,肺泡大小不等、結構紊亂,肺泡壁變薄、斷裂,肺泡腔擴大,部分融合成較大的囊腔。結論煙霧熏吸法可有效建立COPD肺損傷大鼠模型,可明確典型COPD肺損傷的病理基礎。第二部分右美托咪定降低miRNA-146a表達抑制COPD大鼠肺泡上皮細胞凋亡目的研究右美托咪定對具有介導COPD大鼠肺泡上皮細胞凋亡作用的miRNA-146a表達的影響,利用流式細胞儀、實時定量PCR檢測miRNA-146a以及凋亡相關因子p53和Bcl-2表達水平改變,以期明確右美托咪定對COPD肺損傷的保護機制。方法選取24只SD大鼠并隨機分為3組:空白對照組(8只)、COPD未給藥組(8只)和COPD右美托咪定給藥組(8只)。分離、純化、培養(yǎng)各組大鼠肺泡上皮細胞?瞻讓φ战M肺泡上皮細胞取自正常大鼠肺組織,COPD未給藥組和COPD右美托咪定給藥組肺泡上皮細胞取自COPD大鼠模型肺組織,COPD右美托咪定給藥組加入5 μM右美托咪定培養(yǎng)3天,空白對照組和COPD未給藥組將給予等量生理鹽水培養(yǎng)3天,進行細胞凋亡檢測和實時定量PCR檢測,明確細胞凋亡情況和miRNA-146a以及凋亡相關因子p53和Bcl-2的表達水平。結果1.肺泡上皮細胞凋亡流式細胞儀檢測結果顯示:COPD未給藥組和COPD右美托咪定給藥組損傷細胞比例、壞死細胞比例和凋亡細胞比例均較正常對照組顯著升高(p0.05),而正常存活細胞比例顯著降低(p0.05);COPD右美托咪定給藥組損傷細胞比例和凋亡細胞比例較COPD未給藥組顯著降低(p0.05),正常存活細胞比例則顯著增高(p0.05)。COPD右美托咪定給藥組肺泡上皮細胞凋亡率較COPD未給藥組顯著降低(11.15±0.51vs30.19±1.61%,p0.05)。2.右美托咪定抑制miRNA-146a基因表達情況實時定量PCR檢測結果顯示:COPD未給藥組和COPD右美托咪定給藥組miRNA-146a表達明顯高于空白對照組(p0.05),但COPD右美托咪定給藥組miRNA-146a表達明顯低于COPD未給藥組(p0.05)。3.右美托咪定抑制p53基因表達情況實時定量PCR檢測結果顯示:COPD未給藥組和COPD右美托咪定給藥組p53表達明顯高于空白對照組(p0.05),但COPD右美托咪定給藥組p53表達明顯低于COPD未給藥組(p0.05)。4.右美托咪定抑制Bcl-2基因表達情況實時定量PCR檢測結果顯示:COPD未給藥組和COPD右美托咪定給藥組Bcl-2表達明顯高于空白對照組(p0.05),但COPD右美托咪定給藥組Bcl-2表達明顯低于COPD未給藥組(p0.05)。結論miRNA-146a通過p53和Bcl-2介導肺泡上皮細胞凋亡,右美托咪定可降低miRNA-146a表達抑制COPD大鼠肺泡上皮細胞凋亡從而有效保護肺組織。
[Abstract]:Background and objective Chronic obstructive pulmonary disease (COPD) is a chronic bronchitis and / or emphysema characterized by airway and lung tissue injury, characterized by persistent airflow limitation, and can be developed as a common chronic pulmonary disease of pulmonary heart disease and respiratory failure, with airway and lung tissue. Dexmedetomidine (Dex) is a new type of high selective alpha 2 adrenergic receptor agonist, which is a kind of high selective alpha 2 adrenergic receptor agonist. More and more clinical studies have shown that Dexmedetomidine can protect the brain, heart, kidney, liver, lung and other organs by inhibiting apoptosis, alleviating inflammatory reaction and cell oxidative stress. Especially, the most obvious.MiRNA-146a of lung protection is the research heat point in recent years, and the target TLR4/ depends on the important component of the MyD88 pathway, T NF receptor related factor 6 (TRAF6) and interleukin 1 receptor related kinase 1 (IRAK1) activate NF- kappa B of the downstream signal molecules of TLR4, inducing a large number of inflammatory factors, such as IL-6, IL-1 beta, and TNF- alpha, to release the expression of IL-6, IL-1 beta, and TNF- alpha, to promote the cascade of inflammatory reactions and to participate in the pathogenesis related pathogenesis of COPD, which may be a new target for COPD treatment. Amidazine can regulate the protective effect of miRNA-146a on COPD lung injury. Its clear mechanism is not clear, it is the focus of this study, and it is also an innovation. This study is to establish a COPD rat model to clarify the pathological basis of lung injury in COPD rats, and to clarify the protective effect and mechanism of right metoimidin on COPD lung injury by miRNA-146a. The establishment of COPD rat model and lung function detection and histological examination were established to establish the rat model of COPD lung injury. The pathological basis of COPD lung injury was confirmed by observing the general condition of the rat, the lung function test, the arterial blood gas analysis, the bronchoalveolar lavage fluid and the pathological examination of the lung tissue. Methods 16 SD were selected. Rats were randomly divided into 2 groups, blank control group (8 rats) and COPD group (8 rats). COPD lung injury model was established by smoke fumigation. The lung function indexes such as tidal volume (Tidal volume, TV), maximum expiratory flow (Peak expiratory flow, PEF), 50% vital expiratory flow (EF 50), 0.3 second forced expiratory volume (FEV0.3) and FEV0.3 and exertion were measured. Lung activity (FVC) ratio (FEV0.3/FVC); analysis of rat arterial oxygen pressure (Pa02) and carbon dioxide partial pressure (PaC02); collection of rat bronchoalveolar lavage fluid, cell count, classification and protein content detection; rat lung tissue, wet / dry weight ratio test and histopathology examination. Results 1. general condition: blank control group rats Diet, normal drinking water, normal weight growth, smooth hair and no obvious respiratory symptoms; group COPD rats gradually appeared anorexia, weight loss, dark yellow and shedding of hair, reduced activity, and respiratory symptoms of respiratory symptoms, such as sneezing, wheezing and increasing respiratory rate, and.2. lung function test: the TV in the blank control group was 2.65 + 0.21 mL, PEF was 38.5. 5 + 0.24 mL/s, EF50 is 1.81 + 0.06 mL/s, FEV0.3 is 4.44 + 0.26 mL, and FEV0.3/FVC is 88.45 + 0.34%, TV in COPD group is 1.26 + 0.17 mL, PEF is 17.61 + 0.35 mL/s, EF50 is 1.20. The arterial blood gas analysis in the white control group (0.05).3. artery blood gas analysis: the arterial blood of the blank control group was 89.35 + 4.30 mmHg, and the arterial blood of the COPD group was 73.12 + 5.11 mmHg, and the arterial blood Pa02 of the COPD group was significantly lower than that of the blank control group (P0.05). The arterial blood of the blank control group was 43.22 + 5.19 mmHg, while the arterial blood of the control group was 43.22 + 5.19. PaCO2 was 56.36 + 6.71 mmHg, and the arterial blood PaC02 of group COPD rats was significantly higher than that of PaC02 (P0.05).4. bronchoalveolar lavage (BALF) cell count and protein concentration in the arterial blood of the blank control group. Compared with the blank control group, the total number of BALF leucocytes in the COPD group rats increased significantly (2.33 + 1.19 * 1 08/L vs.1.45 0.41 * 0.41), and The proportion of neutrophils increased significantly (17.4 + 7.2%vs.8.6 + 3.4%, P0.05), the proportion of mononuclear macrophages decreased significantly (73.3 + 2.6%vs.83.4 + 1.1%, P0.05), and there was no significant difference in the proportion of lymphocytes (8.1 + 2.0%vs.7.8 2.7%, P0.05). The content of BALF protein in the blank control group was 193.19 + 33.21 mg/L, and the BALF protein content of COPD group was 363.93 + 41. The content of BALF protein in.38 mg/L, group COPD rats was significantly higher than that of BALF protein content (P0.05) in the blank control group (P0.05), the lung wet / dry weight ratio (W/D) in.5. rats: the whole view of lung in the blank control group was pink, W/D was 4.02 + 0.39, while the lungs of the COPD group were pale with the whole lung, and the lung surface showed the size of different lung bullus, W/D 5.41 + 1.03. COPD The lung W/D in the rats of the group was significantly higher than that in the lungs of the blank control group. The lung tissue of W/D (P0.05).6. lung tissue was found in the blank control group. The lung tissue section of the blank control group showed that the bronchoepithelial cilium was rich and orderly. The bronchial tube wall was not shedding, the bronchial tube wall was regular, no thickening and inflammatory cell infiltration, no inflammatory exudation was found in the lumen, and the alveolar cavity was intact. There was no obvious pathological enlargement of.COPD group in the lung tissue section, which showed that the bronchial ciliated columnar epithelium was thickened with serrated hyperplasia, ciliated and lodged, the submucous gland hyperplasia and hypertrophy, extensive infiltration of inflammatory cells, goblet cell proliferation, mucus accumulation in the bronchus cavity, hyperplasia of connective tissue in the tube wall, thickening of smooth muscle, and monocyte and monocyte. Lymphocyte infiltration, alveolar size, structure disorder, alveolar wall thinning, fracture, alveolar cavity enlargement, partial fusion into larger capsule cavity. Conclusion smoke fumigation can effectively establish a rat model of COPD lung injury, and can clarify the pathological basis of typical COPD lung injury. Second right metoimidin reduces miRNA-146a expression and inhibits the alveoli of COPD rats Objective to investigate the effect of dexmedetomidin on the expression of miRNA-146a expression in the apoptosis of alveolar epithelial cells in COPD rats, using flow cytometry, real-time quantitative PCR detection of miRNA-146a and the changes of p53 and Bcl-2 expression levels of apoptosis related factors, in order to clarify the protective mechanism of right metoimidin on COPD lung injury. 24 SD rats were randomly divided into 3 groups: blank control group (8), COPD non administration group (8) and COPD right metomomidine administration group (8). Isolated, purified and cultured rat alveolar epithelial cells. Alveolar epithelial cells in blank control group were derived from normal rats' lung tissue, COPD non administration group and COPD right metomomidin group's alveolar epithelium fine The cells were taken from the COPD rat model lung tissue, and the COPD right metomomomidine administration group was added to 5 u M dexmeimidin for 3 days. The blank control group and the COPD non administration group were given the same amount of normal saline for 3 days. The apoptosis detection and real-time quantitative PCR detection were carried out to determine the cell apoptosis and the table of miRNA-146a and apoptosis related factors p53 and Bcl-2. Results 1. the results of the 1. alveolar epithelial cell apoptosis flow cytometry showed that the proportion of damaged cells, the proportion of necrotic cells and the proportion of apoptotic cells in the group of COPD and right metomomidin increased significantly (P0.05), while the proportion of normal living cells decreased significantly (P0.05); COPD right metoimidin administration group The ratio of damaged cells and apoptotic cells was significantly lower than that of COPD (P0.05), and the proportion of normal living cells increased significantly (P0.05), the apoptosis rate of alveolar epithelial cells in.COPD dexmeimidine group was significantly lower than that in COPD group (11.15 + 0.51vs30.19 + 1.61%, P0.05).2. right metomomidin inhibition of miRNA-146a gene expression The results of quantitative PCR detection showed that the expression of miRNA-146a in the COPD group and COPD dexmedetomidine administration group was significantly higher than that in the blank control group (P0.05), but the miRNA-146a expression in the COPD right metoimidin group was significantly lower than that of the COPD non administration group (P0.05) (P0.05).3. right metomomidin The expression of p53 in the administration group and the COPD dexmedetomidine administration group was significantly higher than that in the blank control group (P0.05), but the expression of p53 in the COPD dexmedetomidin group was significantly lower than that in the COPD group (P0.05). The real-time quantitative PCR detection results of the inhibition of the Bcl-2 gene expression in the right metomomidin group (P0.05) showed that COPD was not given to the drug group and the right metoimidine administration group was expressed. It was significantly higher than that in the blank control group (P0.05), but the expression of Bcl-2 in the COPD dexmedetomidine administration group was significantly lower than that in the COPD group (P0.05). Conclusion miRNA-146a mediated the apoptosis of alveolar epithelial cells through p53 and Bcl-2, and dexmedetomidine could reduce the miRNA-146a expression to inhibit the apoptosis of pulmonary alveolar cells in COPD rats and effectively protect the lung tissue.
【學位授予單位】:南方醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:R614

【相似文獻】

相關期刊論文 前10條

1 羅正曜;鎢對實驗性心、肺損傷的影響[J];自然雜志;1990年09期

2 邢宇彤,周鋼,涂利麗,朱曉峰,戰(zhàn)鵬,張福亭;右胸嚴重開放電擊傷伴肺損傷救治成功1例[J];中華胸心血管外科雜志;2000年06期

3 黃永平,周世文;拉扎堿類防治肺損傷的研究進展[J];中國醫(yī)院用藥評價與分析;2002年04期

4 黃秀芬;恙蟲病致肺損傷37例臨床分析[J];中國醫(yī)師雜志;2003年03期

5 張玉惠;急性壞死性胰腺炎肺損傷發(fā)病機制的研究進展[J];江西醫(yī)學院學報;2004年01期

6 陳紅兵;血小板源性生長因子致肺發(fā)育和肺損傷機制研究的新進展[J];實用兒科臨床雜志;2004年04期

7 周澤鋼;術中機械性肺損傷的救治體會[J];河南外科學雜志;2004年04期

8 張新紅;王海龍;;血管內(nèi)皮生長因子及其受體在肺損傷中作用的研究進展[J];中國急救醫(yī)學;2008年12期

9 張啟芳;梁志海;唐國都;邱小芬;覃錦耀;;巨噬細胞移動抑制因子在急性壞死性胰腺炎肺損傷中的表達及白介素-10的干預作用[J];中國現(xiàn)代醫(yī)學雜志;2008年19期

10 王莉;;干細胞與肺損傷修復[J];臨床肺科雜志;2009年05期

相關會議論文 前10條

1 徐金富;瞿介明;何禮賢;曹立環(huán);賽音;余龍;馬紅輝;;攜帶促血管生成素1基因的間充質(zhì)干細胞對脂多糖致肺損傷的干預研究[A];中華醫(yī)學會第七次全國呼吸病學術會議暨學習班論文匯編[C];2006年

2 劉啟發(fā);羅曉丹;寧涓;徐丹;范志平;孫競;張鈺;徐兵;魏永強;;異基因造血干細胞移植后早期肺損傷與急性移植物抗宿主病的關系研究[A];第11次中國實驗血液學會議論文匯編[C];2007年

3 王瑩;;急性化學中毒性肺損傷治療的幾個技術問題[A];新世紀預防醫(yī)學面臨的挑戰(zhàn)——中華預防醫(yī)學會首屆學術年會論文摘要集[C];2002年

4 白慶威;陳協(xié)群;王文清;朱華鋒;劉玲莉;白燕妮;李蕊;;異基因造血干細胞移植后的免疫性肺損傷[A];第10屆全國實驗血液學會議論文摘要匯編[C];2005年

5 張勁松;陳彥;張芹;屠蘇;康健;陳旭鋒;;感染性肺損傷大鼠肺組織通透性時間效應的實驗研究[A];第十一次全國急診醫(yī)學學術會議暨中華醫(yī)學會急診醫(yī)學分會成立二十周年慶典論文匯編[C];2006年

6 夏仲芳;馬愛聞;談定玉;耿平;吉孝祥;楊燕;;丙烯醛吸入致重癥肺損傷的治療[A];中華醫(yī)學會急診醫(yī)學分會第十三次全國急診醫(yī)學學術年會大會論文集[C];2010年

7 彭波;杜斌;單瑞生;;胰源性肺損傷發(fā)病機制[A];2001年全國中西醫(yī)結合急救醫(yī)學學術會議論文集[C];2001年

8 毛忠華;王舒;姜爽;王曉波;襲榮剛;;全氟異丁烯致肺損傷的治療進展[A];2012年中國藥學大會暨第十二屆中國藥師周論文集[C];2012年

9 夏照帆;馬兵;衛(wèi)偉;賈一韜;;活化素受體樣激酶5活性抑制在炎性肺損傷發(fā)病機制中的意義[A];第五屆全國燒傷救治專題研討會燒傷后臟器損害的臨床救治論文匯編[C];2007年

10 夏金根;孫兵;張恒;王春亭;詹慶元;;自主呼吸對健康兔模型中呼吸機誘導肺損傷的影響[A];中華醫(yī)學會第五次全國重癥醫(yī)學大會論文匯編[C];2011年

相關重要報紙文章 前10條

1 記者 譚嘉 通訊員 邱志濤;燒傷肺損傷防控技術取得重要突破[N];健康報;2013年

2 白毅;我國防化研究獲進展[N];中國醫(yī)藥報;2002年

3 ;拉扎堿類藥預防肺損傷研究近況[N];中國醫(yī)藥報;2003年

4 鄒爭春;新型蛋白MG53可有效抵御肺損傷[N];中國醫(yī)藥報;2014年

5 武警總醫(yī)院急救醫(yī)學中心主任 王立祥邋孫鯤 整理;控制ARDS要五早[N];健康報;2008年

6 特約記者 鄒爭春;新型蛋白MG53可有效抵御肺損傷[N];健康報;2014年

7 上海長海中醫(yī)醫(yī)院 蘇永華 副主任醫(yī)師;化療常見副作用——肺損傷[N];上海中醫(yī)藥報;2013年

8 王雪飛 馬威 王云彥;SARS病毒如何引發(fā)肺損傷[N];健康報;2005年

9 第三軍醫(yī)大學大坪醫(yī)院兒科副主任 胡章雪 整理 鄒爭春;孕期膽汁淤積 為何致孩子肺損傷[N];健康報;2013年

10 劉蘋 鄒爭春;血漿谷氨酸升高是腦源性肺損傷的重要原因[N];中國醫(yī)藥報;2013年

相關博士學位論文 前10條

1 吳曉丹;腎上腺素刺激的骨髓間充質(zhì)干細胞移植干預實驗性肺損傷的研究[D];復旦大學;2014年

2 潘維忠;依法利珠單抗對大鼠機械通氣所致肺損傷保護作用機制的研究[D];山東大學;2015年

3 林飛;HMGB1/TLR2信號通路在術后認知功能障礙和缺血再灌注肺損傷中的作用及其調(diào)控機制[D];廣西醫(yī)科大學;2016年

4 生偉;血紅素加氧酶-1對體外循環(huán)肺損傷作用及機制研究[D];青島大學;2016年

5 陳星;SHH通路對小鼠內(nèi)毒素性肺損傷及早期臟器發(fā)育作用機制研究[D];山東大學;2016年

6 胡淑玲;MSC旁分泌VEGF/HGF對ALI大鼠肺微血管內(nèi)皮通透性和肺損傷修復的作用及機制研究[D];東南大學;2016年

7 李娜;右美托咪定調(diào)控miRNA-146a對COPD肺損傷的保護作用及機制[D];南方醫(yī)科大學;2017年

8 徐金富;攜帶促血管生成素1基因的間充質(zhì)干細胞干預脂多糖致炎癥性肺損傷的試驗研究[D];復旦大學;2007年

9 馬兵;活化素受體樣激酶5活性抑制在炎性肺損傷發(fā)病機制中意義[D];第二軍醫(yī)大學;2007年

10 趙峰;骨髓間充質(zhì)干細胞在大鼠肺組織內(nèi)的分化及對肺損傷治療作用的研究[D];第四軍醫(yī)大學;2006年

相關碩士學位論文 前10條

1 樊磊;SIRT1對燒傷誘導的心肺損傷的保護作用及機制研究[D];第四軍醫(yī)大學;2015年

2 戎琳怡;KGF-2對吸煙引起肺損傷保護性作用的研究[D];復旦大學;2014年

3 靜廣建;不同濃度七氟醚預處理對大鼠腎臟缺血再灌注致肺損傷的影響[D];濱州醫(yī)學院;2014年

4 張興洲;大承氣沖劑對腹腔感染致肺損傷炎癥介質(zhì)的影響[D];天津醫(yī)科大學;2015年

5 易海玲;中性粒細胞的清除在小鼠腹膜炎肺損傷中作用[D];東南大學;2015年

6 劉晨;NAC對乳腺癌化療后肺損傷的保護作用研究[D];遵義醫(yī)學院;2016年

7 裴煒煒;氡致肺損傷中NF-κB/TFAM/mtDNA通路的改變[D];蘇州大學;2016年

8 胡陽;遠程缺血預處理對體外循環(huán)大鼠肺損傷的影響及相關機制研究[D];廣西醫(yī)科大學;2016年

9 梁興思;山姜素通過上調(diào)水通道蛋白1減輕胰源性肺損傷的機制研究[D];桂林醫(yī)學院;2016年

10 田鯤;水通道蛋白1在小鼠脂肪栓塞綜合征肺損傷模型中的作用[D];上海交通大學;2015年

,

本文編號:2112933

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/yxlbs/2112933.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶e7a1e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲熟妇中文字幕五十路| 日本黄色美女日本黄色| 精品一区二区三区不卡少妇av | 太香蕉久久国产精品视频| 在线视频免费看你懂的| 国产一区二区三区不卡| 老司机亚洲精品一区二区| 欧美日韩综合在线第一页 | 久久亚洲精品成人国产| av国产熟妇露脸在线观看| 婷婷亚洲综合五月天麻豆| 国产精品偷拍一区二区| 亚洲高清中文字幕一区二区三区| 欧美日韩高清不卡在线播放| 九九九热视频免费观看| 国产原创激情一区二区三区| 国产av熟女一区二区三区四区| 久久精品国产99国产免费| 日本少妇中文字幕不卡视频| 91欧美亚洲精品在线观看| 91人妻人澡人人爽人人精品| 免费观看在线午夜视频| 国产又色又粗又黄又爽| 欧美有码黄片免费在线视频| 丰满的人妻一区二区三区| 日本二区三区在线播放| 高清亚洲精品中文字幕乱码| 亚洲国产另类久久精品| 亚洲第一区二区三区女厕偷拍| 国产又大又黄又粗又免费| 欧美黑人巨大一区二区三区| 亚洲成人久久精品国产| 亚洲熟女乱色一区二区三区| 日韩性生活片免费观看| 国产日韩在线一二三区| 国产三级视频不卡在线观看| 狠色婷婷久久一区二区三区| 一区二区三区四区亚洲专区 | 欧美午夜色视频国产精品| 正在播放玩弄漂亮少妇高潮| 国产伦精品一区二区三区精品视频|