骨保護素調控肝臟甘油三酯代謝的機制研究
本文選題:骨保護素 + 非酒精性脂肪肝; 參考:《重慶醫(yī)科大學》2017年博士論文
【摘要】:第一部分OPG在NAFLD動物模型和病人中的表達目的:探索OPG在NAFLD動物模型和NAFLD病人中的變化,初步了解OPG與NAFLD之間的關系。方法:采用定量PCR法檢測c57普食喂養(yǎng)雄性小鼠(20周齡)、HFD小鼠(8周齡開始喂養(yǎng)高脂12周)、ob/ob(普食喂養(yǎng),20周齡)、db/db(普食喂養(yǎng),20周齡)、脂聯(lián)素基因敲除小鼠,NAFLD病人肝臟中OPG m RNA的表達情況。通過western blot方法檢測c57、HFD、ob/ob、db/db,NAFLD病人肝臟中OPG蛋白表達情況。免疫組化分析NAFLD病人和正常人肝臟中OPG蛋白的表達。利用不同濃度的葡萄糖和FFAs刺激L02細胞后,測定OPG m RNA的變化。應用定量PCR方法測定不同喂養(yǎng)狀態(tài)下c57小鼠肝臟中OPG m RNA的表達。結果:在NAFLD動物模型和NAFLD病人中,OPG m RNA和蛋白含量均顯著降低(P0.05),葡萄糖可以呈劑量依賴性的刺激OPG m RNA的表達,而FFAs則抑制OPG m RNA的表達。在空腹時,OPG m RNA表達升高,再喂養(yǎng)后OPG m RNA表達降低。結論:OPG與NAFLD的發(fā)生發(fā)展密切相關。第二部分體外改變OPG表達影響肝細胞甘油三酯的含量目的:體外證實OPG對肝細胞甘油三酯的影響。方法:通過構建OPG過表達或抑制腺病毒,感染L02細胞后,利用FFAs誘導肝細胞脂肪變性。通過油紅O染色觀察L02細胞脂滴變化情況,甘油三酯測定試劑盒測定肝細胞中TG的含量,PCR法測定甘油三酯代謝相關基因FATP2、FATP4、FATP5、CD36、SREBP1c、FAS、ACC、SCD-1、ch REBP、PPARα、Cpt-1a、Mcad、MTTP、LXR、PXR、RXR、PPARγ等m RNA的變化,western blot法測定甘油三酯代謝相關基因SREBP1c、ACC、FAS、CD36、PPARγ等蛋白的變化,western blot法篩選PKA、Akt、JNK、P38、ERK等信號通路的變化。結果:成功構建OPG過表達和抑制腺病毒。與對照組相比較,OPG過表達組肝細胞脂滴的數(shù)量及甘油三酯的含量顯著升高(P0.05);且脂肪酸攝取相關基因CD36顯著升高,而脂肪酸合成相關基因SREBP1c、FAS、ACC、SCD-1,脂肪酸β氧化相關基因PPARα、Cpt-1a、Mcad,VLDL分泌相關基因MTTP等無明顯變化。其次,OPG過表達組核受體基因PPARγ表達明顯升高,而p-ERK的活性降低。然而,與對照組比較,OPG表達降低則會抵抗FFAs所誘導的肝細胞脂肪聚集,肝細胞中TG含量降低。脂肪酸攝取相關基因CD36顯著降低,而脂肪酸合成相關基因SREBP1c、FAS、ACC、SCD-1,脂肪酸β氧化相關基因PPARα、Cpt-1a、Mcad,VLDL分泌相關基因MTTP等變化不明顯。OPG抑制降低了核受體基因PPARγ的表達,增加了p-ERK的活性。結論:體外,OPG促進肝細胞甘油三酯聚集,這一過程可能與CD36和PPARγ的表達密切相關。第三部分OPG基因敲除小鼠抵抗高脂飲食誘導的肝臟脂肪變性目的:通過研究OPG基因敲除小鼠,在體內明確OPG調控肝臟甘油三酯代謝的機制。方法:以雜合子與雜合子配種的方式大量繁殖OPG基因敲除小鼠,獲得足夠雄性野生型和純合子小鼠后,在8周齡開始高脂喂養(yǎng)12周,分成WT-SD、OPG-/--SD、WT-HFD、OPG-/--HFD組。每周測定各組小鼠的體重、攝食等,在20周齡時行GTT、ITT等實驗,通過眼球取血測定血清生化指標,取肝臟做組織病理切片,油紅O染色觀察肝臟脂滴多少,HE染色觀察肝細胞脂肪變性情況,試劑盒測定肝臟甘油三酯等含量。提取肝臟組織RNA和蛋白做基因表達檢測,PCR法測定甘油三酯代謝相關基因FATP2、FATP4、FATP5、CD36、SREBP1c、FAS、ACC、SCD-1、ch REBP、PPARα、Cpt-1a、Mcad、MTTP、LXR、RXR、PXR、FXR、PPARγ等m RNA的變化,western blot法測定甘油三酯代謝相關基因PPARγ、CD36、p-ERK等蛋白的變化。結果:OPG基因敲除小鼠體重明顯低于WT小鼠,而攝食無明顯變化。GTT、ITT實驗顯示OPG基因敲除小鼠能抵抗高脂誘導的胰島素抵抗。血清學檢測顯示,高脂喂養(yǎng)之后,AST、ALT、TG、TC、FFA、GLU等明顯升高,而OPG基因敲除組則低于WT對照組(P0.05)。肝臟組織切片顯示高脂喂養(yǎng)后,小鼠肝臟中脂滴明顯增多,HE染色結果顯示小鼠肝臟發(fā)生明顯脂肪變性、空泡顯著增多,但是OPG-/--HFD明顯好于WT-HFD組。OPG-/-組肝臟甘油三酯含量低于WT組。OPG基因敲除組肝細胞脂肪酸攝取相關基因CD36、FATP2、FATP5表達明顯降低,而脂肪酸合成相關基因SREBP1c、FAS、ACC、SCD-1,脂肪酸β氧化相關基因PPARα、Cpt-1a、Mcad,VLDL分泌相關基因MTTP等無明顯變化。OPG-/-組小鼠肝臟PPARγ表達降低,而p-ERK活性增強。結論:體內,OPG基因敲除小鼠能夠明顯抵抗高脂飲食喂養(yǎng)誘導的肝臟脂肪變性,可能與脂肪酸攝取相關基因的表達變化密切相關。第四部分OPG調控甘油三酯代謝的機制目的:探索OPG調控肝臟甘油三酯代謝的分子機制。方法:首先利用原代肝細胞分離術,驗證OPG過表達對c57原代肝細胞中TG及脂肪酸攝取相關基因CD36,核受體基因PPARγ,p-ERK等的影響。然后分離培養(yǎng)OPG-/-小鼠原代肝細胞,分析其與WT對照組中肝細胞內TG含量及脂肪酸攝取相關基因CD36,核受體基因PPARγ,p-ERK等的影響。進一步,利用CD36-/-原代肝細胞培養(yǎng),驗證OPG是否通過CD36來調控肝細胞中TG的含量。最后通過使用PPARγ抑制劑GW9662、ERK抑制劑SCH772984驗證OPG是否通過p-ERK、PPARγ調控CD36的表達。結果:c57原代肝細胞經(jīng)OPG-Fc處理之后,細胞內TG含量增多,脂肪酸攝取基因CD36表達增加,核受體基因PPARγ表達升高,而p-ERK活性降低。OPG-/-原代肝細胞較WT對照組,細胞內TG減少,脂肪酸攝取基因CD36表達降低,核受體基因PPARγ表達下降,而p-ERK活性增強。在CD36-/-原代中,OPG-Fc則不能增加細胞內TG含量。應用PPARγ抑制劑GW9662后,OPG-Fc不能增加CD36的表達。預先處理ERK抑制劑SCH772984后,OPG-Fc不能增加PPARγ、CD36的表達。結論:OPG通過ERK-PPARγ-CD36軸調控肝臟甘油三酯的含量。
[Abstract]:Part one OPG expression in NAFLD animal models and patients: To explore the changes in OPG in NAFLD animal models and NAFLD patients and to preliminarily understand the relationship between OPG and NAFLD. Methods: the quantitative PCR method was used to detect the male mice (20 weeks old) of C57 universal food (20 weeks old), HFD mice (8 weeks of age to feed high fat 12 weeks), ob/ob (general feeding, 20 weeks old), D B/db (feeding, 20 weeks old), the expression of OPG m RNA in the liver of NAFLD patients with adiponectin gene knockout mice. The expression of C57, HFD, ob/ob, db/db, NAFLD patients' liver was detected by Western blot method. The changes of OPG m RNA were measured after the stimulation of L02 cells. The expression of OPG m RNA in the liver of C57 mice under different feeding States was measured by quantitative PCR. Expression of PG m RNA. The expression of OPG m RNA increased at the empty stomach and OPG m RNA expression decreased after refeeding. Conclusion: OPG and NAFLD are closely related. The second part changes OPG expression in vitro to influence the content of triglycerides in liver cells: in vitro, the effect on hepatocyte glycerol three ester. Method: through construction of overexpression or inhibition Adenovirus, infected with L02 cells, used FFAs to induce fatty degeneration of liver cells. The changes of lipid droplets in L02 cells were observed by oil red O staining. The content of TG in hepatocytes was determined by triglyceride determination kit. PCR method was used to determine triglyceride metabolism related genes FATP2, FATP4, FATP5, CD36, SREBP1c, FAS. PXR, RXR, PPAR gamma and other m RNA changes. Western blot method was used to determine the changes in triglyceride metabolism related genes SREBP1c, ACC, FAS, CD36, PPAR gamma and other proteins. The content of the number and triglyceride increased significantly (P0.05), and the fatty acid uptake related gene CD36 increased significantly, while the fatty acid synthesis related genes SREBP1c, FAS, ACC, SCD-1, fatty acid beta oxidation related genes PPAR a, Cpt-1a, Mcad, VLDL secreted related genes were not significantly changed. Secondly, the gene expression of nuclear receptor gene in the OPG overexpressed group was expressed clearly. Compared with the control group, the decrease of OPG expression resisted the liver cell fat aggregation induced by FFAs, the decrease of TG content in the hepatocytes and the decrease of the fatty acid uptake related gene CD36, and the fatty acid synthesis related genes SREBP1c, FAS, ACC, SCD-1, and fatty acid beta oxidation related genes PPAR a, Cpt-1a, Mcad, FFAs, compared with the control group. The changes of L secretory related gene MTTP do not obviously decrease the expression of PPAR gamma and increase the activity of p-ERK. Conclusion: in vitro, OPG promotes triglyceride aggregation in liver cells, this process may be closely related to the expression of CD36 and PPAR gamma. The third part of OPG knockout mice resists the liver fatty changes induced by high fat diet. Objective: To investigate the mechanism of OPG regulation of triglyceride metabolism in the liver by studying OPG knockout mice. Methods: multiply OPG knockout mice with heterozygotes and heterozygotes, and get enough male wild type and homozygote mice for 12 weeks at 8 weeks of age, and are divided into WT-SD, OPG-/--SD, WT-HFD, OPG-/. Group --HFD. Every week, the weight of mice in each group was measured, feeding and so on. At the age of 20 weeks, GTT, ITT and other experiments were carried out. The serum biochemical indexes were measured by taking blood from the eyeball, taking the liver to make histopathological sections, using the oil red O staining to observe the liver lipid droplets, the HE staining to observe the liver cell fatty degeneration, the determination of liver triglyceride content by the kit and the extraction of liver group. RNA and protein were detected by gene expression, and the changes of triglyceride metabolism related genes such as FATP2, FATP4, FATP5, CD36, SREBP1c, FAS, ACC, SCD-1, CH REBP were measured by PCR. The weight of the knockout mice was significantly lower than that of the WT mice, while the feeding was not significantly changed by.GTT. The ITT test showed that the OPG gene knockout mice could resist high fat induced insulin resistance. The serological test showed that after high fat feeding, AST, ALT, TG, TC, FFA, GLU, and so on were significantly higher, while the OPG gene knockout group was lower than that of the WT control group. The liver tissue section showed high After fat feeding, the lipid droplets in the liver of mice increased obviously. The results of HE staining showed that the liver of mice had obvious fatty degeneration and vacuoles significantly increased, but the content of triglyceride in the liver of group.OPG-/- was better than that of group.OPG-/- in group WT-HFD, and the expression of fatty acid related genes CD36, FATP2 and FATP5 decreased significantly in the group of.OPG gene knockout group WT. Fatty acid synthesis related genes SREBP1c, FAS, ACC, SCD-1, fatty acid beta oxidation related gene PPAR alpha, Cpt-1a, Mcad, VLDL secretion related gene MTTP and so on, the expression of PPAR gamma in the liver of.OPG-/- mice decreased, but p-ERK activity was enhanced. Sex may be closely related to the changes in the expression of fatty acid uptake related genes. Fourth the mechanism of regulating triglyceride metabolism by OPG: To explore the molecular mechanism of OPG regulation of triglyceride metabolism in the liver. Methods: first of all, primary hepatocyte isolation was used to verify the TG and fatty acid uptake related gene CD3 in C57 primary hepatocytes by OPG overexpression. 6, the effect of nuclear receptor gene PPAR gamma, p-ERK and so on. Then, the primary hepatocytes of OPG-/- mice were isolated and cultured, and the effects of TG content and fatty acid uptake related gene CD36, nuclear receptor gene PPAR gamma, p-ERK and so on in the liver cells of the WT control group were analyzed. Further, using CD36-/- primary hepatocyte culture to verify whether OPG was regulated by CD36 to regulate the liver cells. Finally, the expression of CD36 is regulated by the use of PPAR gamma inhibitor GW9662 and ERK inhibitor SCH772984 to verify whether OPG passes through p-ERK and PPAR gamma regulates the expression of CD36. Results: after OPG-Fc treatment, C57 primary hepatocytes are increased, the expression of fatty acid uptake gene is increased, the expression of fatty acid uptake gene is increased, and the expression of nuclear receptor gene is increased, and the activity of PPAR is reduced. Compared with the WT control group, the intracellular TG decreased, the expression of fatty acid uptake gene CD36 decreased, the PPAR gamma expression of the nuclear receptor gene decreased and the p-ERK activity increased. In the original CD36-/- generation, OPG-Fc could not increase the intracellular TG content. After GW9662, OPG-Fc could not increase the expression of CD36. OPG-Fc can not increase the expression of PPAR gamma and CD36. Conclusion: OPG regulates the triglyceride level of liver by ERK-PPAR -CD36 -CD36 axis.
【學位授予單位】:重慶醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:R575.5
【相似文獻】
相關期刊論文 前10條
1 那廣水,于洪儒,王洪新,田英娟,周慶峰;一種小鼠原代肝細胞培養(yǎng)方法[J];錦州醫(yī)學院學報;2003年03期
2 劉烈剛,姚平,章錫平,郝麗萍,楊雪鋒,孫秀發(fā);急性乙醇暴露對人原代肝細胞血紅素氧化酶的影響[J];衛(wèi)生研究;2004年05期
3 蔡大偉;侯艷寧;;原代肝細胞培養(yǎng)技術研究現(xiàn)狀及其新藥研發(fā)中的應用[J];解放軍藥學學報;2009年03期
4 張栗;冉云;王玲;陳晨;張遵真;;茶多酚對乙醇所致原代肝細胞損傷的保護作用研究[J];營養(yǎng)學報;2009年04期
5 谷康定,林群馨;原代肝細胞和傳代細胞對微囊藻毒素-LR的敏感性[J];毒理學雜志;2005年03期
6 鄧穎;陳杰;畢惠嫦;黃民;;原代肝細胞培養(yǎng)及其在藥物代謝和毒理學研究中的應用進展[J];中國藥理學通報;2006年08期
7 羅丹;劉華鋼;;原代肝細胞的分離培養(yǎng)及其在藥物研發(fā)中的應用[J];廣西科學;2006年04期
8 余瑩;張日華;朱自強;王林濤;;改良的小鼠原代肝細胞分離純化方法[J];南京醫(yī)科大學學報(自然科學版);2008年11期
9 譚洪玲;楊明會;王宇光;馬增春;高月;;大鼠原代肝細胞培養(yǎng)方法的建立[J];中國應用生理學雜志;2006年04期
10 杭化蓮;張磊;施曉雷;卞建民;丁義濤;;成人原代肝細胞的分離、培養(yǎng)及凍存[J];世界華人消化雜志;2011年19期
相關會議論文 前10條
1 張丁丁;辛永寧;羅兵;姜曼;劉昊剛;宣世英;;一種易于推廣的分離與培養(yǎng)小鼠原代肝細胞的方法[A];中華醫(yī)學會第十六次全國病毒性肝炎及肝病學術會議論文匯編[C];2013年
2 王鳳飚;李濤;杜智;杜斌;張金卷;;大量幼豬原代肝細胞的分離與培養(yǎng)[A];天津市生物醫(yī)學工程學會2004年年會論文集[C];2005年
3 張麗芳;胡曉;;蛇床子素在大鼠原代肝細胞中代謝的研究[A];中國藥學會應用藥理專業(yè)委員會第三屆學術會議、中國藥理學會制藥工業(yè)專業(yè)委員會第十三屆學術會議暨2008生物醫(yī)藥學術論壇論文匯編[C];2008年
4 洪勝輝;張軍;張蕊;王來娣;邵丹;張宜輝;董飚;段修軍;龔道清;;鵝原代肝細胞的簡易、高純分離及培養(yǎng)[A];安全優(yōu)質的家禽生產——第十五次全國家禽學術討論會論文集[C];2011年
5 莊鵬;江元森;馬會慧;李志剛;麥麗;楊林;姚集魯;;長期培養(yǎng)的大鼠原代肝細胞功能和形態(tài)學觀察[A];中華醫(yī)學會第十二次全國病毒性肝炎及肝病學術會議論文匯編[C];2005年
6 張煒;陳文芳;齊浩;劉淼;屈穎;任兆玉;;紫外輻射對小鼠原代肝細胞細胞內鈣離子濃度的影響[A];第六屆全國光生物學學術研討會論文集[C];2004年
7 王和平;管媛媛;佟雷;王建明;;肝復康滴丸對四氯化碳損傷大鼠原代肝細胞的保護作用[A];2008年中國藥學會學術年會暨第八屆中國藥師周論文集[C];2008年
8 蘇榮勝;顏成;朱華軍;李海琴;唐兆新;;銅對肉雞原代肝細胞活性及糖原含量的影響[A];中國畜牧獸醫(yī)學會家畜內科學分會第七屆代表大會暨學術研討會論文集(下冊)[C];2011年
9 張先杰;王瑩;宋茂民;孫家邦;段鐘平;陳煜;張晶;鄭素軍;;三明治構型大鼠原代肝細胞長期培養(yǎng)及生物學特性的研究[A];第三屆全國重型肝病及人工肝血液凈化學術年會論文集(上冊)[C];2007年
10 楊樺;金福東;毛艷斌;張曉棠;林松;王穎;宋艾芝;劉桂芬;魯潤銘;;乳豬原代肝細胞的分離培養(yǎng)[A];第一屆全國人工肝及血液凈化學術年會暨全國人工肝及血液凈化攻關協(xié)作組成立大會論文集[C];2004年
相關博士學位論文 前6條
1 杜軒;胰島素作用下FASN基因啟動子區(qū)域組蛋白修飾在NAFLD中的作用及機制探討[D];重慶醫(yī)科大學;2017年
2 羅小河;骨保護素調控肝臟甘油三酯代謝的機制研究[D];重慶醫(yī)科大學;2017年
3 周龍;丙泊酚對小鼠原代肝細胞胰島素抵抗的影響[D];南方醫(yī)科大學;2014年
4 許斌;鴨原代肝細胞對鴨乙型肝炎病毒易感性相關蛋白的研究[D];復旦大學;2006年
5 黃屹;乙型肝炎病毒在原代肝細胞共培養(yǎng)模型上的增強感染研究[D];北京協(xié)和醫(yī)學院;2013年
6 劉振威;健康成人原代肝細胞體外實驗測定異煙肼和利福平的肝代謝和肝毒性的研究[D];復旦大學;2004年
相關碩士學位論文 前10條
1 覃玉燕;成人原代肝細胞的分離、鑒定及其蛋白質合成與P450表達[D];湖南師范大學;2015年
2 陳亮;成人原代肝細胞培養(yǎng)及凍存復蘇后細胞凋亡的Annexin V/PI檢測及Fas表達[D];湖南師范大學;2015年
3 肖燕;乙酰甲喹及其代謝物的抑菌活性和對雞原代肝細胞毒性的研究[D];南京農業(yè)大學;2014年
4 孫珍珍;同型半胱氨酸通過內質網(wǎng)應激致肝脂質蓄積作用[D];重慶醫(yī)科大學;2015年
5 史曉麗;VNN1調節(jié)炎癥狀態(tài)下的肝臟Hepcidin表達及肝鐵紊亂的分子機制[D];南京師范大學;2015年
6 李曼;2D、3D培養(yǎng)的大鼠原代肝細胞和BRL-3A細胞在藥物肝毒性評價中的比較研究[D];廣東藥科大學;2016年
7 徐菁;雛鴨原代肝細胞培養(yǎng)及DHAV-1致肝細胞損傷的研究[D];華中農業(yè)大學;2016年
8 彭孟云;基于P38MAPK信號通路探討祛痰活血顆粒含藥血清調節(jié)NAFLD大鼠原代肝細胞AQP9表達的作用機制[D];西南醫(yī)科大學;2016年
9 張優(yōu)敬;硫化氫對小鼠原代肝細胞脂肪合成和分解的影響[D];河南大學;2015年
10 蔣麗娜;HCVcore蛋白誘發(fā)肝脂肪變機制的初步研究[D];第四軍醫(yī)大學;2011年
,本文編號:1881397
本文鏈接:http://sikaile.net/shoufeilunwen/yxlbs/1881397.html