天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

Learning on Evolving Data Streams

發(fā)布時間:2023-05-20 06:25
  在當今數字時代,海量流式數據正在各種實際應用場景中不斷的自動生成。由于數據流具有無限長度及演化的特性,使得學習算法必須在有限的時間內進行處理,因此如何開發(fā)高效的數據流學習算法一直是機器學習面臨的挑戰(zhàn)。為此,大量概念漂移的數據流學習算法在過去十年中相繼提出。然而現有數據流挖掘仍面臨一些新的問題和挑戰(zhàn)。首先是數據的概念演化(即新類問題)。傳統(tǒng)分類器往往聚焦固定的類別,而在實際場景中,新的類別可能會隨時間推移而增加。其次是數據標簽的稀少性問題。傳統(tǒng)的數據流挖掘往往采用監(jiān)督學習框架。然而數據流的樣本標注將需要大量的時間和資源,現實場景往往僅能提供少量標簽實例。因此如何設計一種可靠的半監(jiān)督學習算法是面臨的另一個挑戰(zhàn)。另外,數據流中的另一個挑戰(zhàn)就是數據的高維問題,它可能會嚴重影響學習算法的性能。針對這些問題,本文提出了一些新的數據流學習算法,其重要的貢獻如下:1.針對概念演化問題,本文提出了一種新的數據流分類算法用于檢測和學習新類。新提出的算法能夠同時處理概念漂移和概念演化問題,同時能夠處理數據流中的復雜的類分布,在噪聲數據中有效區(qū)分概念漂移和演化。在人工和真實數據中表明新提出的方法與前沿方法相比...

【文章頁數】:155 頁

【學位級別】:博士

【文章目錄】:
摘要
ABSTRACT
Chapter1 Introduction
    1.1 Research Background and Significance
        1.1.1 Data Stream Mining
        1.1.2 Challenges
    1.2 Research Progress(State-of-the-art)in Data Stream Mining
        1.2.1 Clustering Data Streams
        1.2.2 Data Stream Classification
            1.2.2.1 Stationary Data Stream Classification
            1.2.2.2 Evolving Data Stream Classification
            1.2.2.3 Data Stream Classification with Novel Class Detection
            1.2.2.4 Semi-supervised Data Stream Classification
    1.3 Research Scope and Thesis Contributions
    1.4 Thesis Organization
Chapter2 Foundation of Concepts
    2.1 Definitions
    2.2 Basis of Stream Clustering Algorithms
    2.3 Taxonomy of Clustering Algorithms
    2.4 Basis of Stream Classification Algorithms
        2.4.1 Learning Structure
        2.4.2 Adaptivity Mechanisms
    2.5 Taxonomy of Classification Algorithms
        2.5.1 Approaches Based on Adaptation Process
            2.5.1.1 Informed or Active Approaches
            2.5.1.2 Blind or Passive Approaches
        2.5.2 Approaches Based on Learning Process
            2.5.2.1 Single Classifier
            2.5.2.2 Ensemble Classifiers
    2.6 Evaluation and Performance Criteria
        2.6.1 Evaluation Metrics
        2.6.2 Estimation Techniques
            2.6.2.1 Prequential Evaluation
            2.6.2.2 Hold-out Evaluation
    2.7 Summary
Chapter3 Data Stream Classification with Novel Class Detection
    3.1 Introduction
    3.2 Related Work
    3.3 Proposed Algorithm
        3.3.1 Problem Formalization
        3.3.2 Overview
        3.3.3 Main modules of EMC
            3.3.3.1 Initial Model Construction
            3.3.3.2 New Class Detection
            3.3.3.3 Classification
            3.3.3.4 Model Update
    3.4 Experiment
        3.4.1 Data sets
        3.4.2 Classification Performance
            3.4.2.1 Comparison Methods
            3.4.2.2 Prediction Performance Analysis
            3.4.2.3 Parameters Sensitivity on Classification Performance
        3.4.3 Evaluation of New Class Detection
            3.4.3.1 Comparison Methods
            3.4.3.2 Evaluation Metrics
            3.4.3.3 Performance Analysis
            3.4.3.4 Parameters Sensitivity
    3.5 Summary
Chapter4 Online Reliable Semi-supervised Learning on Evolving Data Streams
    4.1 Introduction
    4.2 Related Work
    4.3 Proposed Algorithm
        4.3.1 Overview
        4.3.2 Main Building Blocks
            4.3.2.1 Initializing Learning Model
            4.3.2.2 Classification
            4.3.2.3 Online Data Maintenance
    4.4 Experiments
        4.4.1 Data sets
            4.4.1.1 Real-world Data sets
            4.4.1.2 Synthetic Data sets
        4.4.2 Comparison Methods
            4.4.2.1 Semi-supervised algorithms
            4.4.2.2 Supervised algorithms
        4.4.3 Results
            4.4.3.1 Comparison with semi-supervised algorithms
            4.4.3.2 Comparison with supervised algorithms
            4.4.3.3 Parameter Sensitivity Analysis
    4.5 Summary
Chapter5 Learning High Dimensional Evolving Data Streams with Limited Labels
    5.1 Introduction
    5.2 Related Work
        5.2.1 Semi-supervised data stream algorithms
        5.2.2 Synchronization-based data mining
        5.2.3 Denoising autoencoder(DAE)based algorithms
    5.3 Proposed Algorithm
        5.3.1 Notations and symbols
        5.3.2 Overview
        5.3.3 Main parts of the proposed algorithm
            5.3.3.1 Denoising autoencoders(DAE)
            5.3.3.2 Synchronization-based dynamic micro-clusters
            5.3.3.3 Model update
    5.4 Experiments
        5.4.1 Datasets
        5.4.2 Comparison algorithms
        5.4.3 Analysis of results
            5.4.3.1 Performance comparison
            5.4.3.2 Parameter sensitivity analysis
    5.5 Summary
Chapter6 Conclusion
    6.1 Summary
        6.1.1 Classification with novel class identification
        6.1.2 Online semi-supervised classification
        6.1.3 Learning high dimensional evolving data stream with limited labels
    6.2 Future work
Acknowledgements
References
Research Results Obtained During the Study for Doctoral Degree



本文編號:3820716

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/3820716.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶a6b9d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
久久夜色精品国产高清不卡| 91亚洲国产—区=区a| 日本在线 一区 二区| 国产又粗又猛又爽又黄| 午夜福利大片亚洲一区| 日韩欧美亚洲综合在线| 九九热精品视频免费观看| 日韩在线视频精品中文字幕| 欧美午夜视频免费观看| 国产超碰在线观看免费| 国产麻豆视频一二三区| 欧美二区视频在线观看| 日韩中文无线码在线视频| 欧美日韩精品视频在线| 欧美日韩亚洲国产av| 98精品永久免费视频| 国产韩国日本精品视频| 少妇熟女精品一区二区三区| 日韩不卡一区二区在线| 狠狠做深爱婷婷久久综合| 91欧美亚洲视频在线| 亚洲免费视频中文字幕在线观看| 伊人久久五月天综合网| 久久精品国产在热亚洲| 亚洲国产综合久久天堂| 欧美成人精品国产成人综合| 青青草草免费在线视频| 丰满熟女少妇一区二区三区| 日韩国产亚洲欧美激情| 91精品欧美综合在ⅹ| 亚洲午夜福利视频在线| 国产传媒欧美日韩成人精品| 亚洲第一香蕉视频在线| 亚洲中文字幕免费人妻| 欧美精品久久一二三区| 欧美视频在线观看一区| 又色又爽又黄的三级视频| 日韩黄片大全免费在线看| 亚洲国产成人久久一区二区三区| 在线播放欧美精品一区| 国产成人精品99在线观看|