高速輕型并聯(lián)機器人集成優(yōu)化設計與控制
[Abstract]:The parallel robot has the advantages of large load self-weight ratio, high rigidity and high precision. With the increasing demand of production efficiency in the modern industry, the parallel robot has been applied to the high-speed grinding, handling and assembly, in order to reduce the production cost of the robot and reduce the energy consumption. The modern design method considering the light weight has been applied to the development of the robot. In the high-speed operation, the light-weight structure usually introduces the elastic deformation and vibration, and when the traditional analysis and control method for the rigid robot is adopted, the tracking accuracy and the dynamic performance of the robot cannot be ensured. In order to solve the common problems of parallel robot in high-speed operation, a three-RRR parallel robot with a typical structure is used as the object, and the rigid-flexible coupling power modeling of parallel robot designed for the control system is carried out, and the comprehensive mechanism is optimized. The integration and optimization design of the parameter matching and control system parameters of the drive and the traditional part are adjusted, and the performance test and the experimental research are carried out based on the model-based trajectory optimization and control research. Firstly, the kinematics and rigid body dynamics of the 3RRR parallel robot are modeled. Based on this, the rigid character of the end of the rod is considered from the basic assumption of the Euler beam, and the finite element of curvature (CFE, Curvature based final element) is used to model the rod. In this paper, the conventional cantilever beam and simply-supported beam model in the rod of the parallel robot are derived, and the improved curvature finite element (ICFE) method is proposed in consideration of the rigidity of the end of the rod. According to the derived rod model and the small deformation hypothesis, the modeling method of the elastic displacement of the rod and the coupling motion of the rigid body of the robot is proposed. Based on the above model and the Kane equation, the rigid-flexible coupling dynamics model of the 3RRR parallel mechanism is established. In order to validate the derived dynamic model, the modal and acceleration response are analyzed, and the calculated value of the derived model is compared with the ABAQUS imitation true value, and the model is simplified according to the modal analysis. The results show that with the consideration of the characteristic of the end of the rod, the result of modal analysis and acceleration response analysis is significantly improved with the results of the ABAQUS simulation, and the iteration of the rigid-flexible coupling motion equation is avoided because of the reasonable simplification of the model and the solution. The model of this paper guarantees higher calculation accuracy and calculation efficiency. In order to realize the good comprehensive performance of the high-speed parallel robot, the integrated optimization design method of the integration of the mechanism optimization, the parameter matching of the drive transmission components and the parameter adjustment of the control system is put forward. in ord to meet that requirement of high-speed operation, the kinematic and dynamic indexes of global condition number, speed performance, acceleration capability and fundamental frequency are taken into account in the optimization of the mechanism, and the constraint model and the parameter library are established to ensure the economic and the parameter matching of the drive and the transmission component, and the selection cost is the optimization target; In order to obtain high-precision control performance, the control algorithm of dynamic feedforward and PD is designed, and the tracking error of the system is selected as the optimization target. So as to establish an optimization model containing the parameters of the mechanism, the parameters of the drive and the transmission components and the parameters of the control system, and the non-dominant genetic algorithm NSGAII is used for solving the model, and finally, the integrated optimization design of the high-speed parallel robot is finished. The optimization results show that the integrated optimization design effectively improves the comprehensive performance of the high-speed parallel robot. In order to restrain the elastic displacement (FD, flexible displacement) of the high-speed parallel robot and the residual vibration (RV), this paper, from the point of the trajectory planning, considers the flexibility of the rod. The problem of residual vibration suppression and elastic displacement limitation for a given track and point-to-point rapid positioning is studied. Aiming at the problem of residual vibration suppression in a given track, considering the characteristics of the change of the frequency of each step of the parallel robot along with the position, the multi-modal input shaping (IS) and the particle swarm optimization (PSO) and the control are combined, and the residual vibration is established as an optimization target. The parameter of the multi-modal input shaper is the optimization model of the optimization variable, and the control model is optimized off-line by using the PSO. The simulation results show that the optimized shaper can obviously restrain the residual vibration, and the residual vibration is further reduced with the increase of the number of the shaper, and the problem of large calculation amount brought by the prior method to the real-time updating of the parameter of the shaper is avoided. for the fast point-to-point motion, the time optimal planning and the multi-mode input shaping are combined, a two-step optimization method is proposed, and the time optimal problem is firstly solved by adopting a section pseudo-spectrum method (GPM, Gauss pseudo-spectrum method), The results show that the two-step optimization method achieves the limit of the residual vibration and the elastic displacement when the time is optimal. In order to solve the problem of tracking control of high-speed light (HSLW, high-speed and light-weight) parallel robot with flexible link, a compound control algorithm based on integral manifold and high gain observer is proposed. firstly, a small parameter is introduced according to a stiffness matrix, a rigid-flexible coupling dynamic model is reduced to a fast and slow two subsystems based on an integral manifold, At the same time, considering the influence of the elastic displacement of the rod on the end track, the correction moment is designed, and the elastic compensation of the elastic displacement of the rod on the end movement of the robot is realized. The rapid sub-system is controlled by a sliding mode variable structure, so that the manifold is established. In order to solve the problem that the rate of change of curvature cannot be measured directly, a high-gain observer is introduced and the stability is proved. For the above-mentioned compound control algorithm, the stability of the whole system is proved, and the selection range of the small parameters is given. Finally, in order to verify the effectiveness of the compound control algorithm, the design algorithm is compared with the singular perturbation and the inversion control algorithm based on the rigid body dynamics. The simulation results show that, In this paper, the compound control method based on the integral manifold and the observer has obvious advantages in the aspects of vibration suppression and track tracking. In order to verify the above-mentioned theoretical research, the design of the 3RRR parallel robot and the selection of the drive and transmission components are carried out with reference to the optimized design results, and the control system is designed by the control architecture of the industrial personal computer, the real-time operating system and the high-speed communication bus. In this paper, a laser tracker is used to test the repeated precision of the robot, and the model test and the acceleration response test are carried out to the system by using the LMS vibration tester to verify the modeling accuracy. In this paper, the planning method based on multi-mode input shaping and PSO and the trajectory planning method based on the segmentation pseudo-spectrum method and the multi-mode input shaping are verified.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP242
【相似文獻】
相關期刊論文 前10條
1 趙新華;并聯(lián)機器人精度分析與綜合研究取得突破[J];天津科技;2005年01期
2 劉善增;余躍慶;杜兆才;楊建新;;并聯(lián)機器人的研究進展與現(xiàn)狀(連載)[J];組合機床與自動化加工技術;2007年08期
3 陳峰;耿永鋒;;6-6型繩牽引并聯(lián)機器人的方位空間研究[J];南京理工大學學報(自然科學版);2007年06期
4 劉辰;趙升噸;;并聯(lián)機器人結(jié)構(gòu)及驅(qū)動方式合理性的探討[J];機械科學與技術;2013年06期
5 ;中國首個3D打印并聯(lián)機器人在重慶誕生[J];機械工程師;2014年01期
6 ;中國首個3D打印并聯(lián)機器人研制成功 成本僅十萬元[J];自動化博覽;2013年12期
7 ;重慶設計出3D打印并聯(lián)機器人[J];機器人技術與應用;2013年06期
8 趙鐵石,黃真;欠秩空間并聯(lián)機器人輸入選取的理論與應用[J];機械工程學報;2000年10期
9 曹清林,岑向東,楊玉萍,沈世德;一種線性平面并聯(lián)機器人機械系統(tǒng)的設計[J];南通工學院學報;2000年S1期
10 金振林,高峰;一種正交并聯(lián)機器人的靈巧度指標及其分布[J];機械設計;2001年07期
相關會議論文 前10條
1 賀利樂;段志善;;并聯(lián)機器人的動態(tài)性能及控制方法的研究現(xiàn)狀與展望[A];振動利用技術的若干研究與進展——第二屆全國“振動利用工程”學術會議論文集[C];2003年
2 高峰;;并聯(lián)機器人應用及其機構(gòu)的創(chuàng)新[A];第十二屆全國機構(gòu)學學術研討會論文集[C];2000年
3 孫立寧;劉彥武;曲東升;李長峰;;靶定位并聯(lián)機器人控制研究[A];第二十六屆中國控制會議論文集[C];2007年
4 陳文家;陳書宏;趙明揚;;一種用于加工的新型4自由度并聯(lián)機器人[A];2001年中國智能自動化會議論文集(上冊)[C];2001年
5 王志峰;吳強;王占林;付永領;;離散微分跟蹤器應用于并聯(lián)機器人單通道控制[A];中國航空學會液壓氣動專業(yè)2005年學術討論會論文集[C];2005年
6 王志峰;吳強;王占林;付永領;;離散微分跟蹤器應用于并聯(lián)機器人單通道控制[A];中國航空學會控制與應用第十二屆學術年會論文集[C];2006年
7 楊廷力;金瓊;劉安心;沈惠平;姚芳華;;基于單開鏈單元的兩平移兩轉(zhuǎn)動輸出并聯(lián)機器人機型設計[A];第十三屆全國機構(gòu)學學術研討會論文集[C];2002年
8 張旭;裴忠才;;液壓6自由度并聯(lián)機器人的控制系統(tǒng)研究[A];第五屆全國流體傳動與控制學術會議暨2008年中國航空學會液壓與氣動學術會議論文集[C];2008年
9 郭希娟;黃真;;并聯(lián)機器人加速度的各向同性[A];第十二屆全國機構(gòu)學學術研討會論文集[C];2000年
10 張建明;王寧;王樹青;;使用模糊轉(zhuǎn)換器的神經(jīng)元非模型控制及在液壓并聯(lián)機器人中的應用[A];1998年中國控制會議論文集[C];1998年
相關重要報紙文章 前2條
1 記者 周芹 張亦筑;我市研發(fā)出國內(nèi)首臺3D打印并聯(lián)機器人[N];重慶日報;2013年
2 記者 王陽;“并聯(lián)機器人”研發(fā)形成體系[N];上?萍紙;2014年
相關博士學位論文 前10條
1 蘇宇;繩牽引并聯(lián)機器人的力學分析與性能優(yōu)化[D];西安電子科技大學;2014年
2 劉鵬;柔索牽引并聯(lián)機器人力學分析及穩(wěn)定性評價[D];西安電子科技大學;2015年
3 張泉;3-PRR柔性并聯(lián)機構(gòu)平臺的動力學建模及主動振動控制[D];南京航空航天大學;2014年
4 陳正升;高速輕型并聯(lián)機器人集成優(yōu)化設計與控制[D];哈爾濱工業(yè)大學;2016年
5 劉善增;三自由度空間柔性并聯(lián)機器人動力學研究[D];北京工業(yè)大學;2009年
6 李艷;二自由度冗余驅(qū)動并聯(lián)機器人的動力學建模及控制研究[D];山東大學;2010年
7 李海虹;一種含柔性桿件的高速并聯(lián)機器人優(yōu)化設計方法研究[D];天津大學;2009年
8 劉欣;兩種并聯(lián)機器人的機構(gòu)性能分析與運動控制研究[D];西安電子科技大學;2009年
9 李艷文;幾類空間并聯(lián)機器人的奇異研究[D];燕山大學;2005年
10 張世輝;并聯(lián)機器人漢字雕刻技術的研究[D];燕山大學;2005年
相關碩士學位論文 前10條
1 陳美鈺;平面五桿并聯(lián)機器人動力學特性與控制系統(tǒng)研究[D];北京工商大學;2010年
2 黃偉明;基于3-RRRT并聯(lián)機器人的少自由度并聯(lián)機構(gòu)的研究[D];天津理工大學;2015年
3 焦亞彤;6自由度3支鏈并聯(lián)機器人的工作空間分析[D];河北大學;2015年
4 宋婷;二自由度冗余驅(qū)動并聯(lián)機器人動態(tài)控制研究[D];長安大學;2015年
5 陳景禮;3-PCR并聯(lián)機器人運動仿真與精度分析[D];河北工程大學;2015年
6 李楠;名優(yōu)綠茶并聯(lián)采摘機器人控制系統(tǒng)研究[D];南京林業(yè)大學;2015年
7 馬同;3-PSP并聯(lián)機器人的位姿測量與控制系統(tǒng)研究[D];浙江大學;2015年
8 胡如方;并聯(lián)機器人動力學參數(shù)測試方法及實驗驗證[D];安徽工程大學;2015年
9 曾繼濤;一種三自由度快速并聯(lián)機器人的結(jié)構(gòu)設計及系統(tǒng)仿真研究[D];電子科技大學;2015年
10 劉麗;六自由度并聯(lián)機器人軌跡生成及實驗研究[D];長春理工大學;2015年
,本文編號:2499689
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2499689.html