生物醫(yī)學(xué)文本中藥物信息抽取方法研究
[Abstract]:With the development of biomedical research and Internet technology, the number of biomedical literature available on the Internet has increased dramatically. The mass of unstructured biomedical literature contains rich and valuable knowledge. As a biomedical entity that is widely studied, the drug is an important carrier of relevant knowledge. Extracting the structured drug information from the unstructured biomedical text can serve both the researchers and the medical professionals in the relevant field, and can be expanded and updated to update the existing drug knowledge base. As a result, more and more attention has been paid to the extraction of drug information in the biomedical texts, becoming the focus of the study. The current study of drug information extraction is mainly focused on the two problems of drug name recognition and drug-drug interaction, and the performance of the related methods can not meet the needs of the practical application. Therefore, this paper studies the two problems. The main research contents include the following parts: First, the method of drug name recognition based on multi-semantic feature fusion. The semantic feature of the drug-name dictionary has great help to identify the drug name, and is widely used in the drug name recognition method based on machine learning. However, the semantic features of the drug-name dictionary have some limitations due to the limited coverage of the drug-name dictionary and the non-timeliness of the update. It is noted in this document that large-scale unstructured biomedical literature contains a large number of unregistered drug names. In order to make up for the deficiency of the semantic features based on the dictionary, this paper proposes a method of drug name recognition based on multi-semantic feature fusion. The method utilizes large-scale unstructured biomedical literature to generate semantic features based on word vectors and is used in combination with the semantic features generated by the drug name dictionary for drug name recognition. The experimental results show that the performance of the drug name recognition method based on the multi-semantic feature fusion is superior to that of using a single semantic feature. And secondly, identifying the drug name based on the feature combination and the feature selection. A feature combination is to combine a plurality of different types of simple features into one combined feature. The advantage of a combination feature is that it can represent a number of attributes of a word in a statement, as compared to a simple feature. In the problem of drug name recognition, there are many possible combinations of features, which directly combine simple features to produce a large number of combined features, and contain a lot of noise and affect the performance of the model. Thus, in addition to the n-gram feature, the existing drug name recognition method generally uses only a simple feature. In order to effectively use the combination character, this paper presents a feature generation framework for drug-name recognition. The framework comprises a feature combination and a feature selection module, wherein the feature combination module combines the simple feature combination to obtain the combined feature, and the feature selection module removes a large amount of noise in the feature set. Based on the framework, the feature of the word vector, the character of the dictionary and the general characteristic combination are combined, and the obtained characteristics are used for the identification of the drug name with the airport model. The experimental results show that the performance of the drug name recognition method based on the feature combination and feature selection is superior to the drug name recognition method using only the simple feature. And thirdly, a method for extracting a drug interaction relationship based on a text-sequence convolution neural network. The traditional method for extracting the drug interaction relationship with good performance is based on a support vector machine. Such methods use a large number of human-defined features and require various external natural language processing tools to generate these features. As a result, its performance is greatly affected by the external natural language processing tool. In order to reduce the dependence of external natural language processing tools, this paper presents a method for extracting drug interaction relation based on a text-sequence convolution neural network. The method only needs to input the word vector obtained by the unsupervised depth learning algorithm and the randomly initialized position vector, and the feature is automatically learned through the convolution of the text sequence and the maximum pool operation, and is used for the relation extraction of the softmax classifier. The experimental results show that the method is superior to the traditional method based on the support vector machine. And fourthly, a method for extracting a drug interaction relationship based on a dependent structure convolution neural network. The method of drug-interaction relationship extraction based on the text-series convolution neural network ignores the long-distance dependence of words, which is important for the extraction of drug-interaction relationship. In this paper, a method for extracting the drug interaction relation based on the convolution neural network of the dependent structure is proposed, and the long-distance dependency relationship between the words is integrated into the convolution neural network model. The experimental results show that the long-distance relationship between the words can improve the performance of drug interaction. The syntax analysis of the long sentences has many errors, and these errors are propagated to the dependent structure convolution neural network model, which can affect the performance of the model. In order to avoid the error propagation, this paper combines a text-based sequence with a dependent structure-based convolution neural network method according to the length of the sentence. The experimental results show that this combination can further improve the performance of drug interaction.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP391.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 石楨;姚天f ;;一種基于統(tǒng)計和規(guī)則的核心地名抽取方法[J];微型電腦應(yīng)用;2013年02期
2 張世輝;一種新的基于距離的漢字筆畫抽取方法[J];計算機(jī)工程;2003年14期
3 王大亮;涂序彥;鄭雪峰;佟子健;;多策略融合的搭配抽取方法[J];清華大學(xué)學(xué)報(自然科學(xué)版);2008年04期
4 楊建明;;關(guān)系抽取方法研究[J];電子技術(shù);2009年04期
5 孫繼鵬;賈民;劉增寶;;一種面向文本的概念抽取方法的研究[J];計算機(jī)應(yīng)用與軟件;2009年09期
6 鄭偉;呂建新;張建偉;;文本分類中特征預(yù)抽取方法研究[J];情報科學(xué);2011年01期
7 肖明軍,張巍,鄒翔,蔡慶生;一種多策略聯(lián)合信息抽取方法[J];小型微型計算機(jī)系統(tǒng);2005年04期
8 郝博一;夏云慶;鄔曉鈞;鄭方;劉軼;;基于泛化和繁殖的自舉式意見目標(biāo)抽取方法[J];清華大學(xué)學(xué)報(自然科學(xué)版);2009年S1期
9 栗春亮;朱艷輝;徐葉強(qiáng);;中文產(chǎn)品評論中屬性詞抽取方法研究[J];計算機(jī)工程;2011年12期
10 蔡虹,葉水生;基于KPS的Web信息抽取[J];計算機(jī)與現(xiàn)代化;2005年06期
相關(guān)會議論文 前10條
1 宋濤;李素建;;基于流形排序的領(lǐng)域詞抽取方法[A];第五屆全國青年計算語言學(xué)研討會論文集[C];2010年
2 卞真旭;;一種關(guān)鍵詞抽取方法研究[A];2011年安徽省智能電網(wǎng)技術(shù)論壇論文集[C];2011年
3 羅斐;毛宇光;;基于領(lǐng)域分類的查詢接口模式抽取方法[A];2009年研究生學(xué)術(shù)交流會通信與信息技術(shù)論文集[C];2009年
4 栗春亮;朱艷輝;徐葉強(qiáng);;中文產(chǎn)品評論中屬性詞抽取方法研究[A];第六屆全國信息檢索學(xué)術(shù)會議論文集[C];2010年
5 劉昊;王健;林鴻飛;;一種模板與圖核融合的蛋白質(zhì)關(guān)系抽取方法[A];第六屆全國信息檢索學(xué)術(shù)會議論文集[C];2010年
6 翁偉;王厚峰;;基于LDA的關(guān)鍵詞抽取方法[A];第五屆全國青年計算語言學(xué)研討會論文集[C];2010年
7 何莉;林鴻飛;;一種面向WEB的生物醫(yī)學(xué)領(lǐng)域英漢術(shù)語翻譯對抽取方法[A];中國計算機(jī)語言學(xué)研究前沿進(jìn)展(2007-2009)[C];2009年
8 左云存;宗成慶;;基于HMM的短語翻譯對抽取方法[A];全國第八屆計算語言學(xué)聯(lián)合學(xué)術(shù)會議(JSCL-2005)論文集[C];2005年
9 王裴巖;張桂平;白宇;;一種基于核函數(shù)的技術(shù)關(guān)鍵詞連接關(guān)系抽取方法[A];第六屆全國信息檢索學(xué)術(shù)會議論文集[C];2010年
10 蒲宇達(dá);關(guān)毅;王強(qiáng);;基于數(shù)據(jù)挖掘思想的網(wǎng)頁正文抽取方法的研究[A];第三屆學(xué)生計算語言學(xué)研討會論文集[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 劉勝宇;生物醫(yī)學(xué)文本中藥物信息抽取方法研究[D];哈爾濱工業(yè)大學(xué);2016年
2 李傳席;基于本體的自適應(yīng)Web信息抽取方法研究[D];中國科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 陳倩;基于特征模型的跨領(lǐng)域信息抽取方法研究[D];上海大學(xué);2015年
2 劉驍;基于產(chǎn)品評論的意見抽取方法研究[D];黑龍江大學(xué);2015年
3 洪軍建;面向社會網(wǎng)絡(luò)應(yīng)用的人物關(guān)系抽取方法研究[D];西藏大學(xué);2016年
4 梅莉莉;基于領(lǐng)域特殊性和統(tǒng)計語言知識的新詞抽取方法[D];北京理工大學(xué);2016年
5 陳亞東;面向數(shù)據(jù)稀疏問題的英文事件抽取研究[D];蘇州大學(xué);2016年
6 朱珠;基于雙語的事件抽取方法研究[D];蘇州大學(xué);2016年
7 余偉;基于領(lǐng)域知識的Web信息抽取方法研究[D];安徽工程大學(xué);2016年
8 呂云云;基于集成學(xué)習(xí)的中文觀點句抽取方法研究[D];山西大學(xué);2013年
9 楊云;基于句法結(jié)構(gòu)的評價對象抽取方法研究[D];東北師范大學(xué);2015年
10 方瑩;基于句子聚類的信息抽取方法研究[D];山西大學(xué);2005年
,本文編號:2496275
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2496275.html