基于檢測的數據關聯(lián)多目標跟蹤算法研究
[Abstract]:The multi-objective tracking of video sequences is an important content in the field of computer vision, and has been widely used in the fields of national defense, video surveillance, intelligent navigation/ assistant driving, intelligent robot, behavioral analysis, video retrieval, biomedicine and so on. The purpose of the video multi-target tracking is to calibrate the motion trajectory of each target in the video sequence. However, the study of multi-objective tracking algorithm is a challenging task, which is influenced by the image quality, noise and background interference, the target appearance and the motion pattern, the uncertainty of the number of tracked targets, and the complex and variable occlusion. There is also a large number of theoretical and technical problems to be solved. In the last ten years, with the continuous improvement of the performance of the target detector, the target tracking method based on the detection has attracted wide attention and has become the current multi-target tracking method. In the method, the detection response output by the detector is taken as an input, and the detection responses belonging to the same target are connected one by one by the data association technology, and finally the motion trail of each target is obtained. The design of the association model is the key to the data association technology based on the detection, and a good correlation model should be used to integrate the observation information reflecting the intrinsic attributes of the target track as much as possible, and provide a reliable track association under the noise and the complex scene. This paper focuses on the development of the multi-object tracking field, and focuses on the correlation model and its application in the multi-objective tracking method. The main work includes the following four parts: (1) The multi-objective tracking method based on the Hough forest learning is an effective multi-target tracking method. In this paper, a multi-target tracking algorithm based on the Hough forest classifier is proposed in this paper. the method comprises the following steps of: firstly, generating a reliable short track slice through a conservative correlation algorithm; then, extracting the appearance and the motion characteristic with the discrimination performance from the trace piece set in a step-by-step processing mode, generating a training sample and constructing a Hough forest; and in the testing phase, The connection probability between the track slices is estimated by using the effective symbol information stored in the forest leaf node, and finally the path association is converted into a solution problem under the maximum posterior probability criterion (MAP). The experiment proves the effectiveness of the correlation model of the track slice based on the Hough forest: compared with the recent algorithm of some foreign peers, the method has obtained the corresponding tracking effect (2) matching the complexity of the motion scene due to the isolated response point of the occlusion reasoning model, The frequently occurring occlusion, etc., even the most advanced detector at present, also has the problems of false detection, missed detection, inaccurate detection, etc. The conservative association strategy adopted in the reliable track slice generation phase will also miss some detection responses. The above problems will result in an isolated response point that cannot be associated with any trace in the final tracking result, so that the target track gap is increased and the smoothness decreases. In this paper, a new occlusion reasoning model is proposed, which can be used to infer the occluded area and the non-occlusion area of the occlusion target. Based on this, the fusion feature description of the occlusion target is designed, and the matching strategy between the isolated response point and the target track is proposed. And the problem of the target attribution of the isolated response point is effectively solved. As a post-processing technique to fill the gap of the track, the method of this chapter is of general applicability to the tracking algorithm associated with the track slice. (3) The multi-objective tracking method based on the conditional random field (CRF) has become a hot topic in recent years based on the multi-objective tracking method of the Hough forest condition with the airport. As the core of the CRF model, the parameter estimation and state-based reasoning of the CRF model is very difficult, and the parameters are estimated conventionally by using a heuristic algorithm or a heuristic method, and the CRF reasoning process is also easy to fall into a local optimal. In this paper, Hough Forest Conditional Random Field (HFRF) is proposed in this paper. The probability of MH jump acceptance is calculated by the SW-ctrl algorithm to realize the state-based reasoning, and the probability parameters required for CRF inference are provided by the Hough forest. HFRF has embedded CRF model parameter learning and reasoning in the same framework, thus avoiding the difficulty in the traditional CRF tracking method. In addition, unlike the traditional CRF map model, HFRF additionally defines a binary indicator hidden variable for each side, extends the binary group structure relationship in the traditional CRF to the ternary, and can consider the time-space relationship of the more moving target, the triple structure facilitates the optimization of the tracking algorithm and the performance improvement (4), and the traditional data association model of the multi-target tracking method based on the joint expression of the data is mostly modeled according to the difference between the data, for example, the distance between the two features is calculated; This operation is essentially a dimension reduction process that will result in a partial loss of the original data. In this paper, a multi-objective tracking algorithm based on data joint distribution modeling is presented in the traditional CRF model. The method constructs a binary potential function to characterize the correlation between the track slices, and constructs a high-order class loss function (regular term) to constrain the number of targets to be solved, and on the basis of which, a cost equation is obtained, and finally the class calibration under the CRF model is realized through the cost minimization. In which the potential function between the track pieces is modeled as the data joint distribution under two hypothetical conditions, and the reasoning process of the CRF model is completed by establishing the compatibility of the related data, the repulsion probability and the completion of the CRF model. The method is characterized in that the distribution characteristics of the sample categories stored among the tree leaf nodes of the Hough forest are utilized, and the estimation of the joint distribution probability of the data under the two assumptions is realized in the form of a non-reference. The simulation experiments carried out on a plurality of databases prove the effectiveness of the method in this paper. The proposed method is a new way to design the multi-object tracking algorithm.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP391.41
【相似文獻】
相關期刊論文 前10條
1 金忠;一種多目標跟蹤算法[J];南京理工大學學報(自然科學版);1985年S1期
2 龔萍;張輝;毛征;張慶龍;孔文超;;融合局部熵二維熵的空中目標跟蹤算法研究[J];國外電子測量技術;2014年01期
3 馬奔,史忠科,皮燕妮;成像目標跟蹤算法分析[J];西安電子科技大學學報;2005年03期
4 孫中森;孫俊喜;宋建中;喬雙;;一種抗遮擋的運動目標跟蹤算法[J];光學精密工程;2007年02期
5 陳愛華;孟勃;朱明;王艷華;;多模式融合的目標跟蹤算法[J];光學精密工程;2009年01期
6 牛長鋒;劉玉樹;;融合多特征的粒子濾波目標跟蹤算法[J];華中科技大學學報(自然科學版);2010年01期
7 蔡榮太;吳元昊;王明佳;吳慶祥;;視頻目標跟蹤算法綜述[J];電視技術;2010年12期
8 佟國峰;蔣昭炎;谷久宏;龐曉磊;;基于隨機蕨叢的長期目標跟蹤算法[J];東北大學學報(自然科學版);2013年01期
9 曹曉麗;李明;邢玉娟;譚萍;;幾種自動目標跟蹤算法的比較研究[J];硅谷;2013年02期
10 王魯平,李飚,胡敏露;一種基于多傳感器數據融合的目標跟蹤算法[J];紅外與激光工程;2004年02期
相關會議論文 前10條
1 徐炳吉;;一種多站聯(lián)合目標跟蹤算法[A];數學及其應用文集——中南模糊數學和系統(tǒng)分會第三屆年會論文集(上卷)[C];1995年
2 杜方芳;劉士榮;邱雪娜;;一種改進的粒子濾波目標跟蹤算法[A];PCC2009—第20屆中國過程控制會議論文集[C];2009年
3 付曉薇;方康玲;李曦;;一種基于特征的多目標跟蹤算法[A];2003年中國智能自動化會議論文集(下冊)[C];2003年
4 許偉村;趙清杰;;一種基于粒子濾波的多目標跟蹤算法[A];2011年中國智能自動化學術會議論文集(第一分冊)[C];2011年
5 李軍;張華;單梁;;一種基于Mean shift和粒子濾波的綜合目標跟蹤算法[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學學報(增刊)][C];2009年
6 肖敬若;胡伏原;鄭江濱;張艷寧;;一種有效的多目標跟蹤算法[A];第十二屆全國信號處理學術年會(CCSP-2005)論文集[C];2005年
7 鄭黎義;陳興無;王磊;李正東;;紅外/雷達雙傳感器融合目標跟蹤算法[A];中國工程物理研究院科技年報(2005)[C];2005年
8 張震宇;王立松;;基于粒子濾波的傳感器目標跟蹤算法[A];2008年中國高校通信類院系學術研討會論文集(上冊)[C];2009年
9 王亞楠;陳杰;甘明剛;;基于差分進化的改進粒子濾波目標跟蹤算法[A];中國自動化學會控制理論專業(yè)委員會C卷[C];2011年
10 張濤;費樹岷;胡剛;;基于多特征信息自適應融合的視頻目標跟蹤算法[A];第二十九屆中國控制會議論文集[C];2010年
相關博士學位論文 前10條
1 胡子軍;基于隨機有限集的雷達多目標跟蹤算法研究[D];西安電子科技大學;2015年
2 張雷;復雜場景下實時目標跟蹤算法及實現(xiàn)技術研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2016年
3 王晶晶;復雜擁擠環(huán)境下協(xié)同視頻監(jiān)控中目標跟蹤算法研究[D];中國科學技術大學;2016年
4 田浩;基于核函數的目標跟蹤算法研究[D];長安大學;2016年
5 秦永;基于隨機有限集的目標跟蹤算法研究[D];華中科技大學;2016年
6 項俊;基于檢測的數據關聯(lián)多目標跟蹤算法研究[D];華中科技大學;2016年
7 盧建國;基于粒子濾波的視頻目標跟蹤算法研究[D];北京郵電大學;2011年
8 馮巍;分布式多視角目標跟蹤算法研究[D];復旦大學;2011年
9 王書朋;視頻目標跟蹤算法研究[D];西安電子科技大學;2009年
10 劉晴;基于區(qū)域特征的目標跟蹤算法研究[D];北京理工大學;2014年
相關碩士學位論文 前10條
1 張健;形變目標跟蹤算法的研究與實現(xiàn)[D];遼寧大學;2015年
2 張巧麗;基于LabVIEW的運動目標跟蹤算法研究與實現(xiàn)[D];陜西科技大學;2015年
3 鐘寶康;基于壓縮感知的預測目標跟蹤算法研究[D];江西理工大學;2015年
4 薛桐;基于CamShift的運動目標跟蹤算法研究[D];沈陽理工大學;2015年
5 王增宇;基于稀疏表達的目標跟蹤算法研究[D];沈陽理工大學;2015年
6 王靜;結構化的表觀模型及兩階段目標跟蹤算法研究[D];沈陽理工大學;2015年
7 葛凱蓉;自然場景下目標跟蹤算法的研究[D];山東大學;2015年
8 向偉;基于檢測的目標跟蹤算法研究[D];上海交通大學;2015年
9 單順勇;結合多示例學習和模板匹配的目標跟蹤算法研究[D];江西理工大學;2015年
10 張碧武;基于單目視覺的目標跟蹤算法的研究與實現(xiàn)[D];電子科技大學;2015年
,本文編號:2493621
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2493621.html