流形正則化多核模型的監(jiān)督與半監(jiān)督分類研究與應(yīng)用
[Abstract]:Data classification is one of the most basic learning tasks of machine learning. With the development of networked information, the data complexity of the required classification is getting higher and higher. Multi-core learning is an effective method for classification of complex data sets due to the strong ability of describing data features. From a classification point of view, the data set is divided into an input data portion, a spatial or attribute information of the data, and a corresponding output data portion, which is the category label information of the data. Input data samples, from natural world or engineering, often have inherent constraints or constraints, which can be described in nature by a mathematical manifold. The manifold constraints of the input data samples in their space are the intrinsic characteristics of the data and are important information for people to identify the target. However, the multi-core classification method has not fully utilized the manifold constraint information of the input data samples. In order to use the manifold constraint information of the input data samples, this paper presents a supervised manifold regularization multi-core classification model with input data sample manifold constraint information. In order to obtain the manifold constraint information of the input data samples in their space, it is necessary to describe their neighbor relation degree in space. ) At the same time, the class label information, which is expressed by the output data, is considered, that is, the degree of neighbor relation between the same class data is higher than that of the neighbor relation among the different class data. In the end, this paper gives a manifold regularized multi-core classification model with a supervised type of input data sample manifold constraint, considering the manifold regular term of the supervised type input data sample manifold constraint of the reference label information, and establishing a supervised type manifold regularized multi-core classification model with input data sample manifold constraint. The algorithm of this model is given. The results of the comparison of supervised classification simulation tests show that a supervised manifold regularization multi-core classification model with input data sample manifold constraints is effective. In the actual project, the output part of the data is generally the fact that the reference number and the no-label are present at the same time. In this paper, a supervised type manifold regularization multi-core classification model with input data sample manifold constraints is expanded into a semi-supervised classification model. First, the neighbor relation between all input data samples is obtained by the Euclidean distance, and the manifold constraint information of the input data sample is obtained; and then, the multi-kernel function in the extended-supervised manifold regularized multi-core classification model is used for the matrix of all input data samples and the manifold regular information of the manifold constraint information of all the input data samples is calculated; therefore, The expansion model is a kind of semi-supervised manifold regularized multi-core classification model which can comprehensively utilize the data samples with the label and the no-label. In this paper, the solution algorithm, the error analysis and the semi-supervised classification simulation test of the semi-supervised manifold regularized multi-core classification model are presented. The results show the effectiveness of the model in the semi-supervised classification. In order to improve the self-adaptability and classification accuracy of the model, a semi-supervised manifold regularized multi-core classification model is presented in this paper. On the one hand, the automatic selection method of the parameters of a multi-kernel function in a semi-supervised manifold regularization multi-core classification model is proposed. On the other hand, In this paper, the constrained form of multi-core combined weight in a semi-supervised manifold regularized multi-core classification model is improved, and a model general solution of a p-norm constrained multi-core combined weight is given. In this paper, by improving the mathematical expression of the semi-supervised manifold regularization multi-core classification model and designing the solution algorithm, the kernel function parameter value to be selected is transformed into the solution of the algorithm. And the specific value of the kernel function parameter is automatically determined. in the aspect of improving the constraint of the multi-core combined weight, the general p-norm constraint is improved by the fixed 1-norm constraint of the multi-core combination weight in the semi-supervised manifold regularization multi-core classification model, The solution theorem of the semi-supervised manifold regularized multi-core classification model with p-norm constrained multi-core combined weight and its proof are given. In this paper, the semi-supervised and semi-supervised classification model is compared with the two-aspect improved semi-supervised classification model. The experimental results show that the semi-supervised manifold regularized multi-core classification model and the semi-supervised manifold regularized multi-core classification model of the auto-selected semi-supervised manifold regularized multi-core classification model and the p-norm constrained multi-core combined weight are effective.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP181
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李妍妍;李媛媛;葉世偉;;基于流形正則化的支持向量回歸及應(yīng)用[J];計(jì)算機(jī)應(yīng)用;2007年08期
2 毛玉明;郭杏林;趙巖;呂洪彬;;基于精細(xì)計(jì)算的動(dòng)載荷反演問(wèn)題正則化求解[J];動(dòng)力學(xué)與控制學(xué)報(bào);2009年04期
3 仇光;鄭淼;張暉;朱建科;卜佳俊;陳純;杭航;;基于正則化主題建模的隱式產(chǎn)品屬性抽取[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2011年02期
4 劉超,刁現(xiàn)芬,汪元美;超聲逆散射成像問(wèn)題中的正則化方法研究[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2005年02期
5 周定法;;電磁逆散射成像的一種混合正則化方法[J];微計(jì)算機(jī)信息;2007年13期
6 顧勇為;歸慶明;張磊;;基于復(fù)共線性診斷的正則化方法[J];信息工程大學(xué)學(xué)報(bào);2007年04期
7 蔡傳寶;湯文成;;基于有限元法-正則化的彈性模量反求算法研究[J];應(yīng)用力學(xué)學(xué)報(bào);2009年01期
8 侯衛(wèi)東,莫玉龍;動(dòng)態(tài)電阻抗圖象重建的正則化方法[J];計(jì)算機(jī)工程;2001年09期
9 王彥飛;數(shù)值求解迭代Tikhonov正則化方法的一點(diǎn)注記[J];數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用;2002年03期
10 許建華,張學(xué)工,李衍達(dá);最小平方誤差算法的正則化核形式[J];自動(dòng)化學(xué)報(bào);2004年01期
相關(guān)會(huì)議論文 前8條
1 楊元喜;徐天河;;綜合驗(yàn)前模型信息和驗(yàn)后觀測(cè)信息的自適應(yīng)正則化方法[A];《大地測(cè)量與地球動(dòng)力學(xué)進(jìn)展》論文集[C];2004年
2 解凱;呂妍昱;;一種高效的正則化參數(shù)估計(jì)算法[A];全國(guó)第19屆計(jì)算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2008年
3 蘇利敏;王耀威;王彥飛;;基于SAR特征的正則化計(jì)算方法及其在紋理分類中的應(yīng)用[A];第25屆中國(guó)控制會(huì)議論文集(下冊(cè))[C];2006年
4 曹毅;呂英華;;基于微遺傳算法和正則化處理的模糊圖像復(fù)原方法[A];全國(guó)第13屆計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)(CAD/CG)學(xué)術(shù)會(huì)議論文集[C];2004年
5 周定法;薄亞明;;解電磁逆散射問(wèn)題的截?cái)嗤耆钚《朔椒╗A];第七屆工業(yè)儀表與自動(dòng)化學(xué)術(shù)會(huì)議論文集[C];2006年
6 魏素花;王雙虎;許海波;;軸對(duì)稱物體X射線層析成像的正則化方法[A];全國(guó)射線數(shù)字成像與CT新技術(shù)研討會(huì)論文集[C];2012年
7 劉曉芳;徐文龍;陳永利;;基于非二次正則化的并行磁共振圖像保邊性重建[A];浙江生物醫(yī)學(xué)工程學(xué)會(huì)第九屆年會(huì)論文匯編[C];2011年
8 王金海;王琦;鄭羽;;基于L_1正則化和投影方法的電阻抗圖像重建算法[A];天津市生物醫(yī)學(xué)工程學(xué)會(huì)第三十三屆學(xué)術(shù)年會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 鐘敏;反問(wèn)題多尺度迭代正則化方法[D];復(fù)旦大學(xué);2014年
2 產(chǎn)文;Web社區(qū)問(wèn)答檢索的關(guān)鍵技術(shù)研究[D];復(fù)旦大學(xué);2014年
3 王靜;電阻抗成像的幾種正則化方法研究[D];哈爾濱工業(yè)大學(xué);2015年
4 李維;有限元方法和正則化策略在光學(xué)分子影像中的應(yīng)用[D];西安電子科技大學(xué);2015年
5 閆青;基于梯度正則化約束的圖像重建算法研究[D];上海交通大學(xué);2014年
6 楊燾;流形正則化多核模型的監(jiān)督與半監(jiān)督分類研究與應(yīng)用[D];北京科技大學(xué);2016年
7 方晟;基于正則化的高倍加速并行磁共振成像技術(shù)[D];清華大學(xué);2010年
8 肖銓武;基于核的正則化學(xué)習(xí)算法[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
9 薛暉;分類器設(shè)計(jì)中的正則化技術(shù)研究[D];南京航空航天大學(xué);2008年
10 王林軍;正則化方法及其在動(dòng)態(tài)載荷識(shí)別中的應(yīng)用[D];湖南大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 焦彩紅;正則化夾角間隔核向量機(jī)[D];河北大學(xué);2015年
2 牛征驥;基于混合范數(shù)的電阻率反演算法研究[D];大連海事大學(xué);2015年
3 楊嬌;參數(shù)變化識(shí)別問(wèn)題的稀疏約束正則化方法及應(yīng)用[D];哈爾濱工業(yè)大學(xué);2015年
4 張衍敏;基于正則化的多分散系納米顆粒粒度反演優(yōu)化方法研究[D];齊魯工業(yè)大學(xué);2015年
5 吳瀚;對(duì)于使用Adaptive Lp正則化的線性回歸問(wèn)題在高維情況下漸近性質(zhì)的討論[D];復(fù)旦大學(xué);2014年
6 余鉅東;正則化方法解決神經(jīng)網(wǎng)絡(luò)稀疏化問(wèn)題[D];大連理工大學(xué);2015年
7 高路;基于Bregman的CT稀疏角度迭代重建研究[D];西安電子科技大學(xué);2014年
8 周陽(yáng)權(quán);井地電阻率成像2.5D正反演及其應(yīng)用研究[D];東華理工大學(xué);2015年
9 趙莉平;兩類分?jǐn)?shù)次微分相關(guān)反問(wèn)題的正則化方法[D];西北師范大學(xué);2015年
10 何淑梅;雙層球域上逆熱傳導(dǎo)問(wèn)題的經(jīng)典正則化方法[D];西北師范大學(xué);2015年
,本文編號(hào):2477505
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2477505.html