子空間學習若干問題研究及其應用
[Abstract]:Subspace learning is a hot topic in the field of machine learning, which is widely used in computer vision, analytical chemistry, bioinformatics and other fields. For the data with high dimension and few training samples, the commonly used regression, the classification model is often overfitted, and the error of parameter estimation is large and so on. However, although the data is high-dimensional, it may be distributed in a low-dimensional subspace. The regression or classification of the data in this low-dimensional subspace can avoid over-fitting and large error in parameter estimation. Subspace learning is an important way to solve this problem. For specific tasks such as regression, classification and so on, learning the optimal subspace is the core problem of subspace learning. Aiming at the problems of regression, classification and so on, researchers put forward multiple sub-spatial learning models by designing corresponding objective functions and regularization methods of regression coefficients and projection vectors based on various criteria. However, due to the complexity of the specific problems, the authors put forward a multi-sub-spatial learning model. How to design objective function, regression coefficient and projection vector regularization method according to specific regression, classification task and regression coefficient, projection vector to obtain the highest regression, classification accuracy is still a difficult problem in subspace learning. In this paper, several problems of designing optimal objective function, regression coefficient and regularization method of projection vector in the subspace learning theory of work-around in this paper are studied, focusing on minimizing the error classification rate. Minimizing mean square error is the objective learning optimal projection vector, and the subspace modeling with correlation between data is three problems. The research contents and achievements of this paper include the following aspects: 1. In this paper, the problem of optimal projection vector in linear classification problem is studied, and an approximate optimal linear discriminant model is proposed. The existing linear discriminant analysis model does not consider whether the projection vector is optimal and depends on the estimation of the mean value and covariance matrix of the distribution from the sample. The data obeys the Laplacian distribution. The criterion for finding the optimal projection vector in the sense of minimum error rate is analyzed, and the robust linear discriminant analysis model and the solution method of linear programming are given. The model depends on the estimation of mean and mean absolute deviation and is more robust than the estimation of mean and covariance matrix. It is suitable for the case of fewer training samples with noise or outliers. Simulation experiments on the data of Gao Si distribution following Gao Si distribution, Laplacian distribution and Gao Si distribution with missing attributes show that the model has a good classification effect. 2. In this paper, the problem of optimal projection vector in linear regression problem is studied, and an approximate optimal partial least squares model is proposed. In this paper, the relation between mean square error and projection vector is analyzed, and the regression model based on partial least squares frame is given to extract the optimal projection vector. Furthermore, an approximate optimal model is proposed, and the solution method of the model based on generalized eigenvalue decomposition is given. Experiments on the standard library show that the model has a smaller prediction error and uses fewer hidden variables. 3. This paper studies the joint modeling of the correlation between different samples and different features of the same sample, and proposes a multi-task multi-perspective learning model based on regression framework and the corresponding kernel multi-task multi-perspective learning model. The display algorithm is given. The learning model is applied to the problem of video tracking, and the joint modeling of the correlation between adjacent frames and the correlation of multiple features is realized by this model. The experimental results on several standard databases show that the real-time performance and tracking accuracy of the proposed method are obviously improved compared with the existing methods.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP391.41;TP181
【相似文獻】
相關期刊論文 前10條
1 陳曉紅;陳松燦;;類依賴的線性判別分析[J];小型微型計算機系統(tǒng);2008年05期
2 劉忠寶;王士同;;改進的線性判別分析算法[J];計算機應用;2011年01期
3 高建強;范麗亞;;模糊線性判別分析中距離對面部識別的影響[J];井岡山大學學報(自然科學版);2012年03期
4 葛熠;王亭亭;韓月;李峰;;基于核雙子空間線性判別分析人臉識別方法[J];科技視界;2012年23期
5 任獲榮;李春曉;孫建維;秦紅波;何培培;高敏;;類依賴增強線性判別分析算法[J];西安電子科技大學學報;2012年05期
6 溫鳳文;王洪春;;改進的張量線性判別分析[J];黑龍江科技信息;2013年24期
7 趙越;徐鑫;喬利強;;張量線性判別分析算法研究[J];計算機技術與發(fā)展;2014年01期
8 趙芳;馬玉磊;;基于概率線性判別分析的可擴展似然公式化人臉識別[J];科學技術與工程;2014年06期
9 周大可,楊新,彭寧嵩;改進的線性判別分析算法及其在人臉識別中的應用[J];上海交通大學學報;2005年04期
10 成忠;諸愛士;;一種適于高維小樣本數據的線性判別分析方法[J];浙江科技學院學報;2008年02期
相關會議論文 前2條
1 歐陽梅蘭;張志敏;陳晨;劉鑫波;梁逸曾;;稀疏線性判別分析法在代謝組學數據研究中的應用[A];中國化學會第29屆學術年會摘要集——第19分會:化學信息學與化學計量學[C];2014年
2 張明錦;杜一平;童佩瑾;;基于非相關線性判別分析的分層特征選擇方法及其在蛋白質組數據分析中的應用[A];第十屆全國計算(機)化學學術會議論文摘要集[C];2009年
相關博士學位論文 前4條
1 任忠國;基于γ特征譜的對象相似性識別技術研究[D];蘭州大學;2015年
2 江修保;子空間學習若干問題研究及其應用[D];華中科技大學;2016年
3 劉忠寶;基于核的降維和分類方法及其應用研究[D];江南大學;2012年
4 潘志斌;半監(jiān)督排序的若干關鍵問題研究[D];華中科技大學;2014年
相關碩士學位論文 前10條
1 王金貝;基于奇異值分解的不相關線性判別分析的通解與性質[D];鄭州大學;2015年
2 林軒;幾種分類問題的研究[D];吉林大學;2015年
3 孔昭陽;基于GPU的并行線性判別分析算法研究[D];哈爾濱工業(yè)大學;2014年
4 袁愈章;圖正則和低秩多標記線性判別分析[D];上海交通大學;2015年
5 張晶;非歐框架下的線性判別分析[D];遼寧師范大學;2015年
6 喬娜娜;基于生物光子學小麥隱蔽性害蟲檢測機理及分類研究[D];河南工業(yè)大學;2016年
7 杜輝;基于二維圖像的人臉識別研究[D];江蘇大學;2016年
8 劉超;非迭代三維線性判別分析及其在人臉識別中的應用[D];云南財經大學;2016年
9 霍中花;非重疊監(jiān)控場景下行人再識別關鍵技術研究[D];江南大學;2016年
10 苗碩;基于L2,1范數和L1范數的魯棒判別特征提取算法研究[D];西安電子科技大學;2015年
,本文編號:2440920
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2440920.html