多項(xiàng)式相位信號(hào)的檢測(cè)和參數(shù)估計(jì)
[Abstract]:Polynomial phase signals are widely used in radar, sonar, wireless communication and seismology. Therefore, the detection and parameter estimation of polynomial phase signals have important theoretical significance and important application value. On the other hand, noise is ubiquitous in the material world and polynomial phase signals are often submerged in noise. Therefore, reducing the signal-to-noise ratio (SNR) threshold of polynomial phase signal detection and parameter estimation has become a goal of many researchers. The detection and parameter estimation algorithms of polynomial phase signal can be divided into two categories: one is multi-linear transformation, such as high-order fuzzy function and its product version-product high-order fuzzy function; The other is phase unwrapping, such as Kitchen's 's phase unwrapping estimation algorithm and Djuric's estimation algorithm. Both algorithms have their advantages and disadvantages. In the past two decades, many theories and methods have been proposed for the detection and parameter estimation of single-component polynomial phase signals. However, these theories and methods have limitations and defects in the processing of multi-component polynomial phase signals. The processing of multi-component polynomial phase signal is much more complicated than that of single component. Therefore, combining with the existing processing methods of polynomial phase signal, the following innovative researches are carried out in this paper: 1. Sparse decomposition is used to detect and estimate polynomial phase signals in additive Gao Si white noise. Under the condition of additive Gao Si white noise, the optimal detection of polynomial phase signal is realized by sparse decomposition, and a fast sparse decomposition algorithm for polynomial phase signal is proposed in combination with fast Fourier transform (FFT). This algorithm greatly reduces the SNR threshold of parameter estimation by 2, and combines dictionary learning algorithm and sparse representation to realize the denoising of polynomial phase signals in additive Gao Si white noise. This paper presents a dictionary learning algorithm which can remove the noise of polynomial phase signal. The dictionary obtained by this algorithm can effectively improve the signal-to-noise ratio (SNR) by using sparse representation. The uncertainty of product cubic phase function and high-order ambiguity function (Product Cubic Phase Function and High-order Ambiguity Function,PCPF-HAF algorithm in multi-component polynomial phase signal estimation is analyzed and solved. This paper analyzes the uncertainty of PCPF-HAF algorithm in estimating the parameters of multi-component polynomial phase signal. For this problem, two effective solutions are proposed, one is to set three time points, and the other is to solve the problem. This method is mainly based on the frequency of the component at three time points in the same line. In the second method, the polynomial phase signals composed of the highest two order phase parameters are multiplied and summed by the transformed signals in two time points. Then the parameter estimation corresponding to the summation maximum value is the correct parameter estimation. 4. An optimized multi-component polynomial phase signal parameter estimation algorithm based on PCPF-HAF is proposed so that the PCPF-HAF algorithm can use fast Fourier transform. A non-uniform interval sampling method is proposed. In view of the fact that multi-component third-order polynomial phase signals can not be multiplied by multiple delay time, multiple scale factors are proposed to multiply each other. In the proposed optimization algorithm, the improved filtering / phase unwrapping parameter estimation algorithm has not realized the improvement of the amplitude parameter, so the singular value decomposition method is proposed to improve the amplitude parameter estimation.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN911.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐一紅;祝長(zhǎng)生;趙耀培;;基于稀疏分解和混沌理論的微弱信號(hào)檢測(cè)[J];電訊技術(shù);2015年11期
2 朱紅運(yùn);王長(zhǎng)龍;王建斌;馬曉琳;;基于奇異值分解和Savitzky-Golay濾波器的信號(hào)降噪方法[J];計(jì)算機(jī)應(yīng)用;2015年10期
3 陳志光;李亞安;陳曉;;基于Hilbert變換及間歇混沌的水聲微弱信號(hào)檢測(cè)方法研究[J];物理學(xué)報(bào);2015年20期
4 王茜;劉勝會(huì);;改進(jìn)K-means算法在入侵檢測(cè)中的應(yīng)用研究[J];計(jì)算機(jī)工程與應(yīng)用;2015年17期
5 張全;李雙田;;改進(jìn)奇異值分解算法在時(shí)間域瞬變電磁信號(hào)降噪中的應(yīng)用[J];信號(hào)處理;2015年08期
6 張兆維;劉慧;張海林;;深空通信中高動(dòng)態(tài)多普勒的聯(lián)合檢測(cè)算法[J];北京郵電大學(xué)學(xué)報(bào);2015年04期
7 于洪波;王國(guó)宏;曹倩;王娜;;一種高脈沖重復(fù)頻率雷達(dá)微弱目標(biāo)檢測(cè)跟蹤方法[J];電子與信息學(xué)報(bào);2015年05期
8 鄭紅利;行鴻彥;徐偉;;混沌背景中微弱信號(hào)檢測(cè)的回聲狀態(tài)網(wǎng)絡(luò)方法[J];信號(hào)處理;2015年03期
9 商慶健;張金敏;王廳長(zhǎng);;基于有效K均值-有效極限學(xué)習(xí)機(jī)的混沌海雜波背景中微弱信號(hào)檢測(cè)[J];計(jì)算機(jī)應(yīng)用;2015年03期
10 張鵬飛;劉維;江澤林;劉紀(jì)元;張春華;;合成孔徑聲納圖像陰影增強(qiáng)方法研究[J];兵工學(xué)報(bào);2015年02期
相關(guān)博士學(xué)位論文 前1條
1 周良臣;多項(xiàng)式相位信號(hào)檢測(cè)與參數(shù)估計(jì)研究[D];電子科技大學(xué);2007年
,本文編號(hào):2348998
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2348998.html