天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類博士論文 >

穩(wěn)健的雜波抑制與參數(shù)估計(jì)方法研究

發(fā)布時(shí)間:2018-11-21 21:09
【摘要】:機(jī)載預(yù)警雷達(dá)作為一種軍用傳感器,在現(xiàn)代戰(zhàn)爭(zhēng)中發(fā)揮著重要作用。機(jī)載雷達(dá)在探測(cè)低空目標(biāo)時(shí),處于俯視工作狀態(tài),不可避免地會(huì)接收到許多地面雜波。地面雜波強(qiáng)度大、范圍廣,運(yùn)動(dòng)目標(biāo)往往淹沒在雜波中,從而導(dǎo)致了機(jī)載雷達(dá)的檢測(cè)性能下降。機(jī)載雷達(dá)雜波抑制技術(shù)包括超低副瓣天線、偏置相位中心天線和空時(shí)自適應(yīng)處理(STAP)?諘r(shí)自適應(yīng)處理是一種二維的自適應(yīng)濾波技術(shù),其利用陣列天線提供的空域自由度與相參脈沖串提供的時(shí)域自由度來構(gòu)造二維濾波器,具有較好的雜波抑制能力,有效地提高了機(jī)載雷達(dá)的運(yùn)動(dòng)目標(biāo)檢測(cè)性能。STAP的理論已經(jīng)較為完善,但是在實(shí)際的工程應(yīng)用中,依然面臨著較多問題。小樣本條件下的STAP方法、非均勻環(huán)境下的STAP方法、穩(wěn)健的STAP方法、知識(shí)輔助的STAP方法以及復(fù)雜電磁環(huán)境下的STAP方法是目前STAP研究領(lǐng)域的熱點(diǎn)問題同時(shí)也是亟需解決的問題。本文圍繞以上五個(gè)方面展開研究,主要工作內(nèi)容概括如下:第二章研究了對(duì)角加載參數(shù)的估計(jì)問題。對(duì)角加載可以提高空時(shí)自適應(yīng)處理在小樣本情況下的性能。然而,在實(shí)際中加載參數(shù)的確定是一個(gè)較為困難的問題。為了解決這個(gè)問題,提出了一種基于回波數(shù)據(jù)的自適應(yīng)的對(duì)角加載參數(shù)估計(jì)方法。該方法首先將對(duì)角加載問題轉(zhuǎn)化為Tikhonov規(guī)劃問題,然后利用廣義交叉驗(yàn)證準(zhǔn)則構(gòu)造優(yōu)化問題,最后采用割線法求解優(yōu)化問題、計(jì)算加載參數(shù)。仿真數(shù)據(jù)實(shí)驗(yàn)結(jié)果表明該方法可以準(zhǔn)確的估計(jì)加載參數(shù),提高了對(duì)角加載在實(shí)際中的應(yīng)用性。第三章研究了密集目標(biāo)的檢測(cè)問題。機(jī)載雷達(dá)在地面運(yùn)動(dòng)目標(biāo)檢測(cè)時(shí),主波束照射范圍內(nèi)的運(yùn)動(dòng)目標(biāo)密度較大。協(xié)方差矩陣受到目標(biāo)信號(hào)嚴(yán)重?cái)_動(dòng),傳統(tǒng)的非均勻檢測(cè)器性能下降。為了解決這個(gè)問題,提出一種基于重加權(quán)自適應(yīng)功率剩余的穩(wěn)健非均勻檢測(cè)器。該方法通過對(duì)訓(xùn)練樣本集自適應(yīng)重加權(quán)來降低奇異樣本對(duì)協(xié)方差矩陣計(jì)算的影響。仿真與實(shí)測(cè)數(shù)據(jù)實(shí)驗(yàn)結(jié)果表明該方法可以有效剔除訓(xùn)練樣本中的奇異樣本,提高了傳統(tǒng)的自適應(yīng)功率剩余檢測(cè)器的穩(wěn)健性。第四章研究了陣元幅相誤差估計(jì)問題。機(jī)載雷達(dá)的陣元幅相誤差會(huì)影響運(yùn)動(dòng)目標(biāo)的參數(shù)估計(jì)與定位性能。為了解決這個(gè)問題,提出了雜波子空間正交法與雜波Frobenius范數(shù)擬合法兩種陣元幅相誤差估計(jì)方法。雜波子空間正交法利用雜波補(bǔ)空間與最大左奇異值矢量的正交性來估計(jì)陣元幅相誤差,而雜波Frobenius范數(shù)擬合法通過擬合重構(gòu)的數(shù)據(jù)和實(shí)際的接收數(shù)據(jù)來估計(jì)陣元幅相誤差。仿真數(shù)據(jù)實(shí)驗(yàn)結(jié)果表明與現(xiàn)有方法相比,這兩種方法在低脈沖數(shù)目、低樣本數(shù)目、低雜噪比的情況下均能取得良好的參數(shù)估計(jì)精度和穩(wěn)健性。第五章研究了載機(jī)速度與偏航角的估計(jì)問題。速度與偏航角是知識(shí)輔助空時(shí)自適應(yīng)處理中的必要參數(shù),然而,在某些情況下,這兩個(gè)參數(shù)無法獲得或者精度較低。為了解決這個(gè)問題,提出了一種基于曲線擬合的參數(shù)估計(jì)方法。該方法首先利用子孔徑平滑capon譜估計(jì)接收數(shù)據(jù)的功率譜,然后利用門限檢測(cè)方法提取雜波對(duì)應(yīng)的功率譜軌跡,最后將雜波軌跡的空時(shí)二維頻率值與已知的雷達(dá)構(gòu)型參數(shù)代入最小截?cái)喽斯烙?jì)器求解。仿真與實(shí)測(cè)數(shù)據(jù)實(shí)驗(yàn)結(jié)果表明該方法改善了傳統(tǒng)的曲線擬合方法的精度與穩(wěn)健性。第六章研究了相干轉(zhuǎn)發(fā)式干擾的對(duì)抗問題。相干轉(zhuǎn)發(fā)式干擾會(huì)導(dǎo)致雷達(dá)在接收端產(chǎn)生大量虛假目標(biāo),降低雷達(dá)對(duì)真實(shí)目標(biāo)的檢測(cè)性能。為了解決這個(gè)問題,提出了一種自適應(yīng)發(fā)射技術(shù)對(duì)抗相干轉(zhuǎn)發(fā)式干擾。該方法首先利用雷達(dá)預(yù)先發(fā)射的高重頻脈沖串對(duì)轉(zhuǎn)發(fā)式干擾進(jìn)行檢測(cè)和參數(shù)估計(jì);然后在正常工作模式時(shí)利用估計(jì)得到的干擾參數(shù)優(yōu)化陣列發(fā)射方向圖,使其在干擾偵察方向形成零陷,從而達(dá)到降低干擾機(jī)截獲雷達(dá)發(fā)射信號(hào)的概率的目的。仿真數(shù)據(jù)實(shí)驗(yàn)結(jié)果表明該方法可以對(duì)轉(zhuǎn)發(fā)式干擾實(shí)現(xiàn)準(zhǔn)確的檢測(cè)和參數(shù)估計(jì)。與其它的信號(hào)處理方法相比,該方法有效減輕了接收端信號(hào)處理的負(fù)擔(dān)。
[Abstract]:As a kind of military sensor, the airborne early-warning radar plays an important role in the modern war. The airborne radar is in a top-down state when the low-altitude target is detected, and many ground clutter is inevitably received. The ground clutter intensity is large, the range is wide, the moving target is often inundated in the clutter, thus the detection performance of the airborne radar is reduced. The airborne radar clutter suppression technique includes the ultra-low sidelobe antenna, the offset phase center antenna and the time-time adaptive processing (STAP). when the space-time adaptive processing is a two-dimensional adaptive filtering technology, the two-dimensional filter is constructed by utilizing the time domain freedom degree provided by the array antenna and the time domain degree of freedom provided by the phase parameter pulse train, and the moving target detection performance of the airborne radar is effectively improved. The theory of STAP is perfect, but in the practical engineering application, there are still more problems. The STAP method under the condition of the small sample, the STAP method in the non-uniform environment, the robust STAP method, the knowledge-assisted STAP method, and the STAP method under the complex electromagnetic environment are the hot issues in the current STAP research field, and the problem of the urgent need to be solved at the same time. In this paper, the research is carried out about the above five aspects, the main contents of the work are as follows: the second chapter studies the estimation of the diagonal loading parameters. The diagonal loading can improve the performance of the self-adaptive processing in the case of small samples when the space is empty. However, the determination of the loading parameters in practice is a more difficult problem. In order to solve this problem, an adaptive diagonal loading parameter estimation method based on echo data is proposed. The method comprises the following steps of: firstly, converting a diagonal loading problem into a Tikhonov planning problem, then constructing an optimization problem by using a generalized cross-verification criterion, and finally solving the optimization problem by adopting a secant method, and calculating a loading parameter. The results of the simulation data show that the method can estimate the loading parameters accurately, and the application of the diagonal loading in practice is improved. The third chapter studies the detection of dense target. When the airborne radar is in the ground motion target detection, the moving target density in the main beam irradiation range is large. the covariance matrix is severely disturbed by the target signal and the conventional non-uniform detector performance is reduced. In order to solve this problem, a robust non-uniform detector based on weight-weighted adaptive power is proposed. the method reduces the influence of the singular sample on the calculation of the covariance matrix by self-adaptive weight weighting of the training sample set. The experimental results of the simulation and the measured data show that the method can effectively eliminate the singular samples in the training samples and improve the robustness of the traditional adaptive power residual detector. In the fourth chapter, the estimation of the phase error of the matrix is studied. The phase error of the array of airborne radar will affect the parameter estimation and positioning performance of the moving target. In order to solve this problem, two phase error estimation methods of clutter sub-space orthogonal method and clutter Frobenius norm are proposed. The clutter subspace orthogonal method uses the orthogonality of the clutter compensation space and the maximum left singular value vector to estimate the matrix phase error, and the clutter Frobenius norm is to be used to estimate the matrix phase error by fitting the reconstructed data and the actual received data. The results of the simulation data show that the two methods can obtain good parameter estimation precision and robustness under the condition of low pulse number, low sample number and low noise ratio. The fifth chapter studies the estimation of the speed and the yaw angle of the carrier. The speed and yaw angle are the necessary parameters in the adaptive processing at the time of knowledge-assisted air-air, however, in some cases, these two parameters are not available or have a lower accuracy. In order to solve this problem, a parameter estimation method based on curve fitting is proposed. The method comprises the following steps of: firstly, using a sub-aperture smoothing capon spectrum estimation to receive the power spectrum of the received data, then extracting the power spectrum track corresponding to the clutter by using a threshold detection method, and finally, substituting the two-dimensional frequency value of the clutter track and the known radar configuration parameters into a minimum truncation two-by-by-by-factor estimator for solving. The experimental results of the simulation and the measured data show that the method improves the accuracy and robustness of the traditional curve fitting method. In chapter 6, the countermeasure of coherent forward interference is studied. Coherent forward interference can cause a large number of false targets to be generated by the radar at the receiving end, and the detection performance of the radar to the real object can be reduced. In order to solve this problem, a self-adaptive transmission technique is proposed to combat coherent forward interference. The method comprises the following steps of: firstly, carrying out detection and parameter estimation on the forwarding-type interference by using a high-weight-frequency pulse train which is pre-transmitted by the radar; then, optimizing the array emission direction map by utilizing the estimated interference parameters in the normal working mode, so that the radar is formed into a zero-trap in the interference detection direction, so that the purpose of reducing the probability of the interference machine to intercept the radar transmitting signal is achieved. The results of the simulation data show that the method can accurately detect and estimate the forwarding-type interference. Compared with other signal processing methods, the method effectively reduces the burden of signal processing at the receiving end.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN959.73

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 胡可欣;胡愛明;;自適應(yīng)雜波抑制技術(shù)在雷達(dá)中的應(yīng)用[J];現(xiàn)代電子技術(shù);2006年08期

2 呂雁;蘇新主;;一種基于背景預(yù)測(cè)的紅外雜波抑制新方法[J];系統(tǒng)工程與電子技術(shù);2007年08期

3 牟妙輝;朱國(guó)富;賀峰;周智敏;;一種用于墻后靜止人體微動(dòng)特征檢測(cè)的雜波抑制方法[J];電子技術(shù);2010年02期

4 陳建春,徐少瑩;多雜波抑制技術(shù)[J];系統(tǒng)工程與電子技術(shù);2000年08期

5 葉少華,朱兆達(dá),朱岱寅;一種改進(jìn)的二端口雜波抑制干涉儀[J];系統(tǒng)工程與電子技術(shù);2002年08期

6 施文武;;一種多頻道運(yùn)動(dòng)雜波抑制技術(shù)[J];現(xiàn)代電子技術(shù);2006年14期

7 竇澤華;張仕元;李明;;基于雷達(dá)回波識(shí)別的雜波抑制[J];信號(hào)處理;2009年08期

8 劉濤;張永;欒金龍;劉振華;馬紅光;;非正側(cè)視陣近程雜波抑制魯棒俯仰濾波算法[J];現(xiàn)代雷達(dá);2010年12期

9 J.P.賴?yán)?;模糊距離雜波對(duì)雜波抑制的限制[J];雷達(dá)與對(duì)抗;1990年04期

10 科卞;自適應(yīng)雜波抑制技術(shù)[J];電子科技大學(xué)學(xué)報(bào);1992年04期

相關(guān)會(huì)議論文 前3條

1 張蓓;劉家學(xué);吳仁彪;;探地雷達(dá)子空間地雜波抑制方法研究[A];第十二屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2005)論文集[C];2005年

2 吳仁彪;劉家學(xué);張蓓;;探地雷達(dá)地雜波抑制方法研究進(jìn)展[A];第十二屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2005)論文集[C];2005年

3 王玲;逯貴禎;肖懷寶;;一種適合機(jī)載多通道SAR低速目標(biāo)的地雜波抑制新方法[A];2009年全國(guó)天線年會(huì)論文集(下)[C];2009年

相關(guān)重要報(bào)紙文章 前1條

1 吳巍 李宏宇;203所寬帶捷變頻信號(hào)源填補(bǔ)國(guó)內(nèi)空白[N];中國(guó)航天報(bào);2011年

相關(guān)博士學(xué)位論文 前7條

1 代保全;機(jī)載數(shù)字陣列雷達(dá)非均勻雜波抑制方法研究[D];西安電子科技大學(xué);2015年

2 李學(xué)仕;高分辨率寬測(cè)繪帶SAR動(dòng)目標(biāo)處理方法研究[D];西安電子科技大學(xué);2015年

3 姜磊;穩(wěn)健的雜波抑制與參數(shù)估計(jì)方法研究[D];西安電子科技大學(xué);2016年

4 伍勇;空時(shí)自適應(yīng)雜波抑制[D];清華大學(xué);2008年

5 曹楊;機(jī)載雷達(dá)非自適應(yīng)雜波抑制方法研究[D];西安電子科技大學(xué);2014年

6 吳宏剛;時(shí)空非平穩(wěn)強(qiáng)雜波抑制與微弱運(yùn)動(dòng)目標(biāo)檢測(cè)技術(shù)[D];電子科技大學(xué);2006年

7 張?jiān)鲚x;天基雷達(dá)空時(shí)自適應(yīng)雜波抑制技術(shù)[D];國(guó)防科學(xué)技術(shù)大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 陳文馳;基于目標(biāo)雜波區(qū)分的雜波抑制方法研究[D];哈爾濱工業(yè)大學(xué);2015年

2 竇道祥;MIMO-OTH雷達(dá)中的多模傳播與雜波抑制研究[D];電子科技大學(xué);2015年

3 翟雯;基于空時(shí)自適應(yīng)處理技術(shù)的雷達(dá)非均勻雜波抑制方法研究[D];電子科技大學(xué);2014年

4 董爍爍;機(jī)載陣列雷達(dá)雜波抑制方法研究[D];西安電子科技大學(xué);2014年

5 張斕子;穿墻成像雷達(dá)雜波抑制與目標(biāo)檢測(cè)技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年

6 趙中興;建筑物透視探測(cè)人體成像技術(shù)研究[D];電子科技大學(xué);2014年

7 盧驍;雷達(dá)旁瓣相消和雜波抑制的研究與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年

8 鄭夢(mèng);微波探墻成像中的雜波抑制算法研究[D];北京理工大學(xué);2016年

9 史洋;基于微弱目標(biāo)檢測(cè)的圖像背景雜波抑制技術(shù)研究[D];電子科技大學(xué);2012年

10 張媛;機(jī)載雜波抑制實(shí)時(shí)處理器的研制[D];電子科技大學(xué);2005年



本文編號(hào):2348263

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2348263.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶68e77***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com