穩(wěn)健的雜波抑制與參數(shù)估計(jì)方法研究
[Abstract]:As a kind of military sensor, the airborne early-warning radar plays an important role in the modern war. The airborne radar is in a top-down state when the low-altitude target is detected, and many ground clutter is inevitably received. The ground clutter intensity is large, the range is wide, the moving target is often inundated in the clutter, thus the detection performance of the airborne radar is reduced. The airborne radar clutter suppression technique includes the ultra-low sidelobe antenna, the offset phase center antenna and the time-time adaptive processing (STAP). when the space-time adaptive processing is a two-dimensional adaptive filtering technology, the two-dimensional filter is constructed by utilizing the time domain freedom degree provided by the array antenna and the time domain degree of freedom provided by the phase parameter pulse train, and the moving target detection performance of the airborne radar is effectively improved. The theory of STAP is perfect, but in the practical engineering application, there are still more problems. The STAP method under the condition of the small sample, the STAP method in the non-uniform environment, the robust STAP method, the knowledge-assisted STAP method, and the STAP method under the complex electromagnetic environment are the hot issues in the current STAP research field, and the problem of the urgent need to be solved at the same time. In this paper, the research is carried out about the above five aspects, the main contents of the work are as follows: the second chapter studies the estimation of the diagonal loading parameters. The diagonal loading can improve the performance of the self-adaptive processing in the case of small samples when the space is empty. However, the determination of the loading parameters in practice is a more difficult problem. In order to solve this problem, an adaptive diagonal loading parameter estimation method based on echo data is proposed. The method comprises the following steps of: firstly, converting a diagonal loading problem into a Tikhonov planning problem, then constructing an optimization problem by using a generalized cross-verification criterion, and finally solving the optimization problem by adopting a secant method, and calculating a loading parameter. The results of the simulation data show that the method can estimate the loading parameters accurately, and the application of the diagonal loading in practice is improved. The third chapter studies the detection of dense target. When the airborne radar is in the ground motion target detection, the moving target density in the main beam irradiation range is large. the covariance matrix is severely disturbed by the target signal and the conventional non-uniform detector performance is reduced. In order to solve this problem, a robust non-uniform detector based on weight-weighted adaptive power is proposed. the method reduces the influence of the singular sample on the calculation of the covariance matrix by self-adaptive weight weighting of the training sample set. The experimental results of the simulation and the measured data show that the method can effectively eliminate the singular samples in the training samples and improve the robustness of the traditional adaptive power residual detector. In the fourth chapter, the estimation of the phase error of the matrix is studied. The phase error of the array of airborne radar will affect the parameter estimation and positioning performance of the moving target. In order to solve this problem, two phase error estimation methods of clutter sub-space orthogonal method and clutter Frobenius norm are proposed. The clutter subspace orthogonal method uses the orthogonality of the clutter compensation space and the maximum left singular value vector to estimate the matrix phase error, and the clutter Frobenius norm is to be used to estimate the matrix phase error by fitting the reconstructed data and the actual received data. The results of the simulation data show that the two methods can obtain good parameter estimation precision and robustness under the condition of low pulse number, low sample number and low noise ratio. The fifth chapter studies the estimation of the speed and the yaw angle of the carrier. The speed and yaw angle are the necessary parameters in the adaptive processing at the time of knowledge-assisted air-air, however, in some cases, these two parameters are not available or have a lower accuracy. In order to solve this problem, a parameter estimation method based on curve fitting is proposed. The method comprises the following steps of: firstly, using a sub-aperture smoothing capon spectrum estimation to receive the power spectrum of the received data, then extracting the power spectrum track corresponding to the clutter by using a threshold detection method, and finally, substituting the two-dimensional frequency value of the clutter track and the known radar configuration parameters into a minimum truncation two-by-by-by-factor estimator for solving. The experimental results of the simulation and the measured data show that the method improves the accuracy and robustness of the traditional curve fitting method. In chapter 6, the countermeasure of coherent forward interference is studied. Coherent forward interference can cause a large number of false targets to be generated by the radar at the receiving end, and the detection performance of the radar to the real object can be reduced. In order to solve this problem, a self-adaptive transmission technique is proposed to combat coherent forward interference. The method comprises the following steps of: firstly, carrying out detection and parameter estimation on the forwarding-type interference by using a high-weight-frequency pulse train which is pre-transmitted by the radar; then, optimizing the array emission direction map by utilizing the estimated interference parameters in the normal working mode, so that the radar is formed into a zero-trap in the interference detection direction, so that the purpose of reducing the probability of the interference machine to intercept the radar transmitting signal is achieved. The results of the simulation data show that the method can accurately detect and estimate the forwarding-type interference. Compared with other signal processing methods, the method effectively reduces the burden of signal processing at the receiving end.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN959.73
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡可欣;胡愛明;;自適應(yīng)雜波抑制技術(shù)在雷達(dá)中的應(yīng)用[J];現(xiàn)代電子技術(shù);2006年08期
2 呂雁;蘇新主;;一種基于背景預(yù)測(cè)的紅外雜波抑制新方法[J];系統(tǒng)工程與電子技術(shù);2007年08期
3 牟妙輝;朱國(guó)富;賀峰;周智敏;;一種用于墻后靜止人體微動(dòng)特征檢測(cè)的雜波抑制方法[J];電子技術(shù);2010年02期
4 陳建春,徐少瑩;多雜波抑制技術(shù)[J];系統(tǒng)工程與電子技術(shù);2000年08期
5 葉少華,朱兆達(dá),朱岱寅;一種改進(jìn)的二端口雜波抑制干涉儀[J];系統(tǒng)工程與電子技術(shù);2002年08期
6 施文武;;一種多頻道運(yùn)動(dòng)雜波抑制技術(shù)[J];現(xiàn)代電子技術(shù);2006年14期
7 竇澤華;張仕元;李明;;基于雷達(dá)回波識(shí)別的雜波抑制[J];信號(hào)處理;2009年08期
8 劉濤;張永;欒金龍;劉振華;馬紅光;;非正側(cè)視陣近程雜波抑制魯棒俯仰濾波算法[J];現(xiàn)代雷達(dá);2010年12期
9 J.P.賴?yán)?;模糊距離雜波對(duì)雜波抑制的限制[J];雷達(dá)與對(duì)抗;1990年04期
10 科卞;自適應(yīng)雜波抑制技術(shù)[J];電子科技大學(xué)學(xué)報(bào);1992年04期
相關(guān)會(huì)議論文 前3條
1 張蓓;劉家學(xué);吳仁彪;;探地雷達(dá)子空間地雜波抑制方法研究[A];第十二屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2005)論文集[C];2005年
2 吳仁彪;劉家學(xué);張蓓;;探地雷達(dá)地雜波抑制方法研究進(jìn)展[A];第十二屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2005)論文集[C];2005年
3 王玲;逯貴禎;肖懷寶;;一種適合機(jī)載多通道SAR低速目標(biāo)的地雜波抑制新方法[A];2009年全國(guó)天線年會(huì)論文集(下)[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 吳巍 李宏宇;203所寬帶捷變頻信號(hào)源填補(bǔ)國(guó)內(nèi)空白[N];中國(guó)航天報(bào);2011年
相關(guān)博士學(xué)位論文 前7條
1 代保全;機(jī)載數(shù)字陣列雷達(dá)非均勻雜波抑制方法研究[D];西安電子科技大學(xué);2015年
2 李學(xué)仕;高分辨率寬測(cè)繪帶SAR動(dòng)目標(biāo)處理方法研究[D];西安電子科技大學(xué);2015年
3 姜磊;穩(wěn)健的雜波抑制與參數(shù)估計(jì)方法研究[D];西安電子科技大學(xué);2016年
4 伍勇;空時(shí)自適應(yīng)雜波抑制[D];清華大學(xué);2008年
5 曹楊;機(jī)載雷達(dá)非自適應(yīng)雜波抑制方法研究[D];西安電子科技大學(xué);2014年
6 吳宏剛;時(shí)空非平穩(wěn)強(qiáng)雜波抑制與微弱運(yùn)動(dòng)目標(biāo)檢測(cè)技術(shù)[D];電子科技大學(xué);2006年
7 張?jiān)鲚x;天基雷達(dá)空時(shí)自適應(yīng)雜波抑制技術(shù)[D];國(guó)防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 陳文馳;基于目標(biāo)雜波區(qū)分的雜波抑制方法研究[D];哈爾濱工業(yè)大學(xué);2015年
2 竇道祥;MIMO-OTH雷達(dá)中的多模傳播與雜波抑制研究[D];電子科技大學(xué);2015年
3 翟雯;基于空時(shí)自適應(yīng)處理技術(shù)的雷達(dá)非均勻雜波抑制方法研究[D];電子科技大學(xué);2014年
4 董爍爍;機(jī)載陣列雷達(dá)雜波抑制方法研究[D];西安電子科技大學(xué);2014年
5 張斕子;穿墻成像雷達(dá)雜波抑制與目標(biāo)檢測(cè)技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
6 趙中興;建筑物透視探測(cè)人體成像技術(shù)研究[D];電子科技大學(xué);2014年
7 盧驍;雷達(dá)旁瓣相消和雜波抑制的研究與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年
8 鄭夢(mèng);微波探墻成像中的雜波抑制算法研究[D];北京理工大學(xué);2016年
9 史洋;基于微弱目標(biāo)檢測(cè)的圖像背景雜波抑制技術(shù)研究[D];電子科技大學(xué);2012年
10 張媛;機(jī)載雜波抑制實(shí)時(shí)處理器的研制[D];電子科技大學(xué);2005年
,本文編號(hào):2348263
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2348263.html