基于低秩和稀疏表示模型的視頻目標(biāo)提取和跟蹤研究
[Abstract]:The extraction and tracking of video object is the basic problem in the field of computer vision, and it is also the key and core technology of intelligent video monitoring system. At present, although the research in this aspect has made remarkable progress, because of the complexity of data, scene and environment, the extraction and tracking of video object is still a very challenging research topic. From the viewpoint of low rank and sparse representation model, this paper discusses the extraction and tracking of video object from the viewpoint of low rank and sparse representation model, studies the video target segmentation based on regularization low rank representation model, and based on weighted low rank decomposition multi-modal motion target detection, Object tracking based on image block representation and dynamic graph learning and multi-modal target tracking based on collaborative sparse representation model. In terms of video target extraction, a video target segmentation framework based on regularization low rank representation model is proposed for video data. Using supervoxel as graph node, using low rank representation model to optimize the similarity relation among them, we can effectively overcome the interference of sparse large noise and dense Gaussian noise. In order to improve the discriminability between supervoxels, the sparse representation coefficient matrix is regularized in sparse representation model, that is, regularization sparse representation model. Because the video data is usually very large, an optimization algorithm based on sub-optimal low-rank decomposition is proposed to solve the proposed model efficiently, and its convergence is guaranteed theoretically. At the same time, a stream processing method is proposed so that the segmentation method can process unlimited long video in limited computing and storage resources. In order to verify the validity, this paper applies the similarity relation of the optimized supervoxel to the unsupervised and interactive video object segmentation task. In view of the complexity of scene and environment, a universal framework for multi-modal motion target detection based on weighted low-rank decomposition is proposed in this paper. Since the visible spectrum information is affected by complex scenes, illumination and haze, the thermal infrared spectral information is introduced to supplement it. in particular, by introducing a quality weight for each modality, combining background data with a low rank structure, a sparse foreground template of multi-modality sharing and a foreground and a continuity constraint of a background pixel point are jointly modeled, so that multi-modal data can be adaptively fused, and then the moving object is detected by the rod. In order to improve the algorithm detection efficiency and maintain the accuracy, an efficient algorithm based on edge-preserving filtering is proposed, which makes the efficiency of the algorithm close to real-time. In addition, a multi-modal motion target detection platform including 25 video pairs is constructed, which makes up for the lack of standard evaluation system in this field and promotes research and development in related fields. In the aspect of target tracking, in order to solve the problem of model drift in the detection-based tracking framework, a dynamic graph learning method based on image block is proposed in this paper. First, the tracking block is divided into non-overlapping small image blocks, and a weight is allocated for each image block to represent the importance of the image block for the object. because the traditional 8-neighborhood graph ignores the global structure of the graph and the local linear relationship, the structure of the graph is dynamically learned by using the global low-rank structure, the sparse local linear relation and the non-negative dynamic learning graph of the edge right between the image blocks as the graph nodes, and meanwhile, the weight vector of the image block is optimized in a semi-supervised manner. Secondly, in order to improve the timeliness of tracking method, a real-time optimization algorithm is proposed to solve the proposed model. Finally, the optimized weight vector is embedded into the target tracking and model updating, so that the tracking performance is greatly improved. In order to overcome the challenges of scene and environment complexity, a multi-modal target tracking method based on collaborative sparse representation model is proposed in this paper. The traditional multi-modal target tracking method treats each modality equally, and if the information of a certain modality has very large ambiguity, the final tracking result is affected. Therefore, a robust tracking is achieved by adaptively fusing different modalities, i.e., introducing a quality weight for each modality in the sparse representation model. In particular, the weight of each modality is determined by the reconstruction error of the modality and the determination of the target and background, and is jointly optimized with the sparse representation coefficients. In addition, since the problem lacks the standard evaluation platform, a standard multi-modal target detection platform is constructed, including 50 matching video pairs, 22 reference methods and two measurement methods. The platform provides a standard evaluation system for the problem and related fields, which contributes to the research in this field.
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李映;張艷寧;許星;;基于信號稀疏表示的形態(tài)成分分析:進(jìn)展和展望[J];電子學(xué)報;2009年01期
2 趙瑞珍;王飛;羅阿理;張彥霞;;基于稀疏表示的譜線自動提取方法[J];光譜學(xué)與光譜分析;2009年07期
3 楊蜀秦;寧紀(jì)鋒;何東健;;基于稀疏表示的大米品種識別[J];農(nóng)業(yè)工程學(xué)報;2011年03期
4 史加榮;楊威;魏宗田;;基于非負(fù)稀疏表示的人臉識別[J];計算機(jī)工程與設(shè)計;2012年05期
5 高志榮;熊承義;笪邦友;;改進(jìn)的基于殘差加權(quán)的稀疏表示人臉識別[J];中南民族大學(xué)學(xué)報(自然科學(xué)版);2012年03期
6 朱杰;楊萬扣;唐振民;;基于字典學(xué)習(xí)的核稀疏表示人臉識別方法[J];模式識別與人工智能;2012年05期
7 耿耀君;張軍英;袁細(xì)國;;一種基于稀疏表示系數(shù)的特征相關(guān)性測度[J];模式識別與人工智能;2013年01期
8 張疆勤;廖海斌;李原;;基于因子分析與稀疏表示的多姿態(tài)人臉識別[J];計算機(jī)工程與應(yīng)用;2013年05期
9 李正周;王會改;劉梅;丁浩;金鋼;;基于形態(tài)成分稀疏表示的紅外小弱目標(biāo)檢測[J];彈箭與制導(dǎo)學(xué)報;2013年04期
10 胡正平;趙淑歡;李靜;;基于塊稀疏遞推殘差分析的稀疏表示遮擋魯棒識別算法研究[J];模式識別與人工智能;2014年01期
相關(guān)會議論文 前3條
1 何愛香;劉玉春;魏廣芬;;基于稀疏表示的煤矸界面識別研究[A];虛擬運營與云計算——第十八屆全國青年通信學(xué)術(shù)年會論文集(上冊)[C];2013年
2 樊亞翔;孫浩;周石琳;鄒煥新;;基于元樣本稀疏表示的多視角目標(biāo)識別[A];2013年中國智能自動化學(xué)術(shù)會議論文集(第五分冊)[C];2013年
3 葛鳳翔;任歲玲;郭鑫;郭良浩;孫波;;微弱信號處理及其研究進(jìn)展[A];中國聲學(xué)學(xué)會水聲學(xué)分會2013年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 李進(jìn)明;基于稀疏表示的圖像超分辨率重建方法研究[D];重慶大學(xué);2015年
2 王亞寧;基于信號稀疏表示的電機(jī)故障診斷研究[D];河北工業(yè)大學(xué);2014年
3 姚明海;視頻異常事件檢測與認(rèn)證方法研究[D];東北師范大學(xué);2015年
4 黃國華;蛋白質(zhì)翻譯后修飾位點與藥物適應(yīng)癥預(yù)測方法研究[D];上海大學(xué);2015年
5 王瑾;基于稀疏表示的數(shù)據(jù)收集、復(fù)原與壓縮研究[D];北京工業(yè)大學(xué);2015年
6 王文卿;基于融合框架與稀疏表示的遙感影像銳化[D];西安電子科技大學(xué);2015年
7 解虎;高維小樣本陣列自適應(yīng)信號處理方法研究[D];西安電子科技大學(xué);2015年
8 秦振濤;基于稀疏表示及字典學(xué)習(xí)遙感圖像處理關(guān)鍵技術(shù)研究[D];成都理工大學(xué);2015年
9 薛明;基于稀疏表示的在線目標(biāo)跟蹤研究[D];上海交通大學(xué);2014年
10 孫樂;空譜聯(lián)合先驗的高光譜圖像解混與分類方法[D];南京理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 王道文;基于稀疏表示的目標(biāo)跟蹤算法研究[D];華南理工大學(xué);2015年
2 李哲;基于稀疏表示和LS-SVM的心電信號分類[D];河北大學(xué);2015年
3 孫雪青;Shearlet變換和稀疏表示相結(jié)合的甲狀腺結(jié)節(jié)圖像融合[D];河北大學(xué);2015年
4 吳麗璇;基于稀疏表示的微聚焦X射線圖像去噪方法[D];華南理工大學(xué);2015年
5 趙孝磊;基于圖像分塊稀疏表示的人臉識別算法研究[D];南京信息工程大學(xué);2015年
6 黃志明;基于辨別式稀疏字典學(xué)習(xí)的視覺追蹤算法研究[D];華南理工大學(xué);2015年
7 張鈴華;非約束環(huán)境下的稀疏表示人臉識別算法研究[D];南京信息工程大學(xué);2015年
8 賀妍斐;基于稀疏表示與自適應(yīng)倒易晶胞的遙感圖像復(fù)原方法研究[D];南京信息工程大學(xué);2015年
9 楊爍;電能質(zhì)量擾動信號的稀疏表示/壓縮采樣研究[D];西南交通大學(xué);2015年
10 應(yīng)艷麗;基于低秩稀疏表示的目標(biāo)跟蹤算法研究[D];西南交通大學(xué);2015年
,本文編號:2267027
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2267027.html