分布式模型預測控制算法相關研究
[Abstract]:With the continuous development of science and technology, modern industrial processes show the characteristics of complex structure, large scale, strong coupling of energy and materials between subsystems, and so on. Distributed model predictive control (Distributed Model Predictive Control, DMPC) is an effective method to solve large-scale system control problems. The advantages of DMPC are: (1) reducing the computational burden of each subsystem; (2) improving the scalability of the system under multiple controllers; (3) strong fault-tolerant ability of the system. The main design goal of DMPC algorithm is to achieve the best control performance under the simple system communication mode and the minimum communication burden. At the same time, the convergence of the algorithm and the stability of the system are guaranteed. Aiming at the related problems of DMPC algorithm and controller design, this paper focuses on the design of DMPC fast algorithm, the disassembly of large system structure and the performance evaluation of MPC control system. The results are as follows: 1. An optimal structure decomposition method based on genetic algorithm (GA) is proposed to solve the problem of large scale system disassembly in distributed predictive control (DPC). The method consists of two new disassembly indexes corresponding to two stages of decomposition, including input grouping (Input Clustering Decomposition, ICD) and input and output pairing (Input-Output Pairing Decomposition IOPD). ICD can be used to eliminate input coupling between subsystems). At the same time, it can balance the computational burden between subsystems. IOPD is to find the right pairing between input and output. The optimization problem corresponding to ICD and IOPD is solved by GA. 2. To solve the problem of DMPC distributed algorithm design, a DMPC algorithm based on SVD decomposition is proposed to effectively reduce the communication burden between subsystems. In this method, the centralized MPC online quadratic optimization problem is transferred to conjugate space without constraint. Each subsystem can solve its own optimal control input independently and in parallel, and the global optimal input can be generated by merging the solutions of each subsystem. This method can also be extended to the constrained case. The obtained unconstrained solution is checked in conjugate space in parallel, and then the solution corresponding to the small singular value is removed according to the size of the singular value. Finally, the optimal solution with constraints. 3. A fast DMPC algorithm based on efficient set method (active-set) is proposed to solve DMPC online optimization problem. The algorithm solves a constrained distributed efficient set quadratic programming problem by using offline inverse of Hessian matrix. According to the size of the unconstrained solution, a two-mode optimization strategy is proposed to speed up the on-line computation. The algorithm can stop the iteration ahead of time, ensure the stability of the system, and be easy to implement. Finally, a warm start strategy using the DMPC optimal value at the previous time can further accelerate the iterative convergence rate of the algorithm. A distributed model prediction algorithm is proposed for the design of series structure DMPC algorithm. The algorithm utilizes the characteristics that the output of each subsystem of the series structure is only related to the upper runaway and its own system input. The traditional iterative DMPC algorithm is improved to obtain a non-iterative hierarchical DMPC algorithm. 5. Aiming at the problem of MPC performance evaluation and improvement, a method to improve the economic performance of MPC control system on line is proposed. According to the data collected online, the iterative learning method is used to continuously adjust the parameters of the MPC controller on line, so as to improve the economic performance of the MPC controller on line. This paper also discusses the possibility of extending this method to distributed MPC systems.
【學位授予單位】:浙江大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TP13
【相似文獻】
相關期刊論文 前10條
1 徐建良,李善平,馬丹;非結構化產(chǎn)品信息的分布式模型研究[J];計算機輔助設計與圖形學學報;1999年05期
2 孫兆林,李一兵,田園;分布式模型的分析研究[J];信息技術;2002年07期
3 曾靜;薛定宇;袁德成;;分布式模型預測控制方法的研究[J];系統(tǒng)仿真學報;2008年21期
4 楊洋;劉水平;;分布式模型預測電壓控制方法研究[J];華北電力大學學報(自然科學版);2012年04期
5 王紅樓,周建新,劉瑞祥,陳立亮;基于分布式模型的鑄造企業(yè)ERP系統(tǒng)開發(fā)[J];鑄造技術;2005年02期
6 W.A.Muhanna;馬文騫;;分布式模型管理系統(tǒng)的幾個問題[J];計算機工程與應用;1991年Z1期
7 黃卓,張濤,郭波;基于Web Services的分布式模型管理方法研究[J];計算機工程與設計;2004年03期
8 周靜;劉全菊;;分布式模型應用于.NET框架的研究與設計[J];通信技術;2009年06期
9 解紹詞,葛君偉,汪維華;對帶有中間主進程CORBA分布式模型的研究[J];計算機工程與設計;2005年03期
10 張永;常學飛;韓春雷;任學海;;基于分布式模型預測控制算法在AGC系統(tǒng)的應用研究[J];吉林電力;2013年05期
相關會議論文 前1條
1 楊大文;龔偉;劉志雨;周國良;;基于分布式模型土壤含水量評估的山洪預警指標體系[A];中國水利學會2010學術年會論文集(上冊)[C];2010年
相關博士學位論文 前1條
1 蔡星;分布式模型預測控制算法相關研究[D];浙江大學;2015年
相關碩士學位論文 前2條
1 鄧艷君;日太陽輻射分布式模型研究[D];南京信息工程大學;2012年
2 張芳;基于分布式模型的動車組預測控制方法[D];華東交通大學;2014年
,本文編號:2266681
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2266681.html