低信噪比大動(dòng)態(tài)下的同步技術(shù)研究
[Abstract]:In the face of the complex communication environment of deep space exploration, how to realize signal synchronization under the bad communication conditions of low signal-to-noise ratio and large dynamic is a difficult problem for deep space communication. Under the condition of low signal-to-noise ratio (SNR), it is difficult to realize fast demodulation processing because of the need to resynchronize each communication link reconstruction, and to estimate several unknown demodulation parameters, but it is difficult to realize fast demodulation processing under low SNR. However, the large dynamic state of motion makes the synchronization error parameters change sharply in a short time, and it is more difficult to estimate. It can be said that these two communication conditions have harsh requirements for synchronization technology, and the contradictory effect of both communication environments makes the implementation of synchronization technology more difficult. It is possible to improve the performance of synchronization system in low SNR environment by using efficient coding method. The synchronization technology based on decoding is the development direction of synchronization technology in the future. In this paper, taking deep space exploration as the application background, taking the Mars landing process in deep space communication as the concrete application example, choosing the decoding assisted synchronization technology as the basic realization mode, the synchronization process of the received signal under the low SNR and large dynamic condition is studied. By analyzing the requirements of low signal-to-noise ratio (SNR), large dynamic applications and their influence on received signals, the synchronization process is divided into three parts: carrier synchronization, timing synchronization and frame synchronization. In the carrier synchronization part, in order to realize the large dynamic synchronization range, the carrier synchronization is divided into two parts: coarse synchronization and fine synchronization. Aiming at the characteristics of low SNR and large dynamic range in coarse synchronization stage, an improved shift average period diagram method in frequency domain is proposed, and a quadratic estimation process is designed to realize carrier coarse synchronization under preset conditions. In this paper, the carrier fine synchronization with low signal-to-noise ratio (SNR) is realized by using the decode-assisted Kostas loop method. In the part of timing synchronization, in order to realize the range of timing synchronization in the whole sampling period, this paper combines the coarse and iterative timing synchronization scheme. First, the timing deviation is reduced to half a symbol period by using the idea of partition search, and then the residual timing deviation is carefully estimated by decoding assisted iterative timing synchronization algorithm. In the part of frame synchronization, this paper enumerates two kinds of code-aided frame synchronization algorithms, and compares their synchronization performance by simulation and calculation. Finally, the hard decision frame synchronization algorithm is chosen as the realization algorithm of frame synchronization. The simulation results show that each part of the algorithm can reach the expected target, and the BER performance of the system is not higher than 103U when the bit SNR is not lower than 2dB.
【學(xué)位授予單位】:中國科學(xué)院國家空間科學(xué)中心
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN919.34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周相超;趙旦峰;薛睿;;深空通信系統(tǒng)中高階LDPC碼的軟定時(shí)同步算法[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2014年03期
2 井慶豐;陸宇平;仲偉志;嚴(yán)曉菊;;基于偽隨機(jī)序列前導(dǎo)碼的OFDM系統(tǒng)幀同步算法[J];系統(tǒng)工程與電子技術(shù);2013年02期
3 田甜;安建平;王愛華;;高動(dòng)態(tài)環(huán)境下無數(shù)據(jù)輔助的擴(kuò)展Kalman濾波載波跟蹤環(huán)[J];電子與信息學(xué)報(bào);2013年01期
4 段瑞楓;劉榮科;周游;王閏昕;侯毅;;一種低復(fù)雜度的極低信噪比高動(dòng)態(tài)信號(hào)載波粗捕獲算法[J];航空學(xué)報(bào);2013年03期
5 陳智雄;苑津莎;;基于準(zhǔn)循環(huán)LDPC碼譯碼軟信息的碼輔助幀同步算法[J];系統(tǒng)仿真學(xué)報(bào);2011年09期
6 苗劍峰;陳武;孫永榮;劉建業(yè);;基于軟件接收機(jī)技術(shù)的低載噪比信號(hào)自適應(yīng)魯棒鎖相環(huán)研究(英文)[J];自動(dòng)化學(xué)報(bào);2011年01期
7 晏輝;唐發(fā)建;張忠培;;一種低復(fù)雜度編碼輔助載波同步算法[J];電子與信息學(xué)報(bào);2010年12期
8 孫劍;孫越強(qiáng);陶鵬;吳迪;;高動(dòng)態(tài)GPS接收機(jī)的信號(hào)跟蹤方法及實(shí)現(xiàn)[J];微計(jì)算機(jī)信息;2010年28期
9 向洋;胡修林;;基于最大似然估計(jì)的高動(dòng)態(tài)GPS載波跟蹤環(huán)[J];電子學(xué)報(bào);2010年07期
10 韓艷春;鐘雪鋒;魯軍;;一種新的定時(shí)和頻偏聯(lián)合估計(jì)算法[J];電訊技術(shù);2010年04期
相關(guān)博士學(xué)位論文 前2條
1 晏輝;無線通信系統(tǒng)中載波同步關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2012年
2 慕建君;低密度糾刪碼和網(wǎng)格圖復(fù)雜度的研究[D];西安電子科技大學(xué);2002年
相關(guān)碩士學(xué)位論文 前10條
1 謝玲;高動(dòng)態(tài)下微弱擴(kuò)頻信號(hào)載波同步技術(shù)研究[D];西安電子科技大學(xué);2013年
2 柴慧斯;深空通信中LDPC-OQPSK系統(tǒng)載波同步算法研究[D];哈爾濱工程大學(xué);2012年
3 饒啟龍;基于CCSDS的火星探測(cè)器測(cè)控通信系統(tǒng)鏈路分析與設(shè)計(jì)[D];上海交通大學(xué);2012年
4 龔萬春;深空通信中的信噪比估計(jì)及定時(shí)同步技術(shù)研究[D];電子科技大學(xué);2012年
5 彭玉明;新型火星EDL導(dǎo)航、制導(dǎo)與控制技術(shù)研究[D];南京航空航天大學(xué);2011年
6 高翔;深空通信解調(diào)技術(shù)研究與實(shí)現(xiàn)[D];中國科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2010年
7 徐俊輝;編碼輔助載波同步算法研究[D];電子科技大學(xué);2010年
8 張錦鈺;高速數(shù)字解調(diào)中符號(hào)同步技術(shù)的研究[D];中國科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2009年
9 崔麗娜;全數(shù)字接收機(jī)中的位同步技術(shù)研究[D];重慶大學(xué);2008年
10 王鵬;LDPC碼的編譯碼原理及編碼設(shè)計(jì)[D];西安電子科技大學(xué);2004年
,本文編號(hào):2249028
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2249028.html