基于計算機視覺的行人交通信息智能檢測理論和關(guān)鍵技術(shù)研究
[Abstract]:With the popularity of video surveillance system and the progress of video image processing technology, more and more attention has been paid to the application of intelligent transportation system based on computer vision technology. It integrates image processing, pattern recognition, artificial intelligence and other technologies to process and analyze the video image sequences collected by surveillance system, intelligently. Understanding and processing video content can deal with various problems such as accident information judgment, pedestrian and vehicle classification, traffic flow parameter detection, moving target tracking and so on, which makes intelligent transportation system more intelligent and practical, and provides comprehensive and real-time traffic state information for traffic management and control. Although intelligent video surveillance technology has been studied for many years, the intelligent traffic information detection system based on computer vision is still in the development stage, and some key technologies need to be further studied. It is true that high performance target detection and tracking methods can not collect pedestrian traffic data in real time and effectively, and it is difficult to analyze and judge pedestrian traffic rules intelligently, and can not effectively manage and control the traffic environment. Based on the National High-tech Research and Development Program (863 Program) and the Ph.D. Research Fund project, this paper studies the basic theory and key technology of ITS based on computer vision technology, and combines the advanced research theory of computer vision, learning to use the computer vision development platform Matla. On the basis of B, this paper takes pedestrians in traffic video as the research object, explores and studies the detection, extraction, tracking, recognition and calculation and analysis of traffic flow parameters of moving objects, and provides technical support for ITS intellectualization. The main research contents include the following aspects: (1) First, according to computer vision and traffic information. Intelligent detection related theory knowledge, using image semantic hierarchy method to re-layered the process of pedestrian traffic semantic information intelligent detection, it is divided into the bottom visual layer, middle visual layer, high visual layer and application layer, and define the function of each layer; from the traffic information system research area and traffic information processing process two aspects This paper summarizes and designs the key technology structure of traffic information intelligent detection, describes the traffic information acquisition technology and traffic digital image processing technology applied in this paper; synthetically applies intelligent video surveillance technology, constructs the system structure of traffic information intelligent monitoring system, builds the hardware and software of traffic information intelligent monitoring system. Software platform, realizing the transformation from theory to practice, provides the foundation for improving and improving the ability of traffic video surveillance. (2) According to the fact that it is difficult to obtain reliable background images in actual traffic scenes, an adaptive background modeling method combining optical flow velocity field is proposed, which introduces optical flow into background modeling and combines background difference. The model can accurately extract the background image and effectively eliminate the noise problem. Then, on the basis of background fitting, a foreground segmentation method based on temporal and spatial information is proposed, which uses adjacent multi-frame temporal variation. Initial detection mask image is obtained by Canny edge detection method, which can effectively solve the problem of difference localization and noise. In extracting spatial information, the gradient image is corrected and watershed transformed by introducing secondary reconstruction and internal and external marking technology to obtain spatial mask image, which can effectively improve the accuracy of spatial segmentation and eliminate the phenomenon of over-segmentation. In the moving target detection part, a pedestrian detection method based on morphological connected region and a semantic information extraction method of underlying traffic are proposed. The morphological connected region recognition method is used to distinguish and delete the uncorrelated features according to the connected region features. In the region, the number of moving objects in the video image is extracted, which can accurately extract the underlying traffic semantic information of moving pedestrians and provide data support for the follow-up work. According to the pedestrian motion characteristics under occlusion, a pedestrian detection method based on head color model and contour information is proposed, which uses RGB and YCbCr color space. In the part of moving target tracking, aiming at the problems of Mean Shift algorithm, an improved algorithm based on Mean Shift algorithm is proposed. Multi-clue information fusion is constructed. Target appearance model, which combines pedestrian appearance, spatial structure and motion information to describe the target, enhances the ability of describing features and improves the tracking accuracy; sets the criteria for judging the region of target scale change from the perspective of background and target, adjusts the algorithm kernel window size to overcome the background interference in tracking; uses Bhattacharyya coefficient to discriminate. Tracking state, aiming at occlusion loss state, a pedestrian occlusion processing method based on four-part search strategy is proposed to recapture the lost target. A pedestrian counting and flow statistics method based on target tracking is proposed to obtain the pedestrian flow information in the ROI region. (5) Based on the extraction of the underlying and intermediate traffic semantic information of the target, an improved BP neural network pedestrian recognition method based on hierarchical genetic algorithm is proposed, which uses a four-level hierarchical chromosome structure. Describes the network structure and parameters, recognizes the types and numbers of moving objects in traffic video images according to the constructed HGA-BP single classifier, and then cascades recognition based on the idea of "from coarse to fine" on the basis of the constructed HGA-BP single classifier, constructs the Cascade-HGA-BP combined classifier, and transfers the high-level traffic video images to the lower level using the Cascade-HGA-BP combined classifier. Three-part detection method is used to realize the final classification and recognition of moving pedestrians. This method achieves good results in the case of coexistence of pedestrians and vehicles in traffic scenes.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP391.41;U495
【相似文獻】
相關(guān)期刊論文 前10條
1 顧偉康;計算機視覺學(xué)的發(fā)展概況[J];浙江大學(xué)學(xué)報;1986年04期
2 戰(zhàn)德臣;陳景春;李仲榮;;計算機視覺研究的一種分布式專家系統(tǒng)模型[J];航天控制;1989年02期
3 邵貴平,劉謹(jǐn),陳敏賢;基于計算機視覺的間距檢測[J];機械制造;2001年11期
4 蔡葉菁;計算機視覺[J];中國包裝工業(yè);2002年05期
5 邵貴平,劉謹(jǐn),陳敏賢;基于計算機視覺的間距檢測[J];機械制造與自動化;2002年02期
6 姜繼祥;周建華;陳明;;基于計算機視覺的干棗在線分級[J];機械制造與自動化;2012年03期
7 聶大同,毛士藝,趙淑華,渠速;計算機視覺與神經(jīng)網(wǎng)絡(luò)[J];北京航空航天大學(xué)學(xué)報;1990年01期
8 林華,敬卿;計算機視覺[J];國防科技參考;1995年04期
9 王天珍;計算機視覺研究進展[J];武漢汽車工業(yè)大學(xué)學(xué)報;1998年01期
10 王天珍;計算機視覺研究[J];空軍雷達學(xué)院學(xué)報;1999年01期
相關(guān)會議論文 前10條
1 宋小華;歐陽丹彤;;時空推理在計算機視覺的應(yīng)用[A];2006年全國理論計算機科學(xué)學(xué)術(shù)年會論文集[C];2006年
2 謝麗欣;牟會;王歡;劉明霞;;基于計算機視覺的人臉檢測與識別綜述[A];第三屆全國軟件測試會議與移動計算、柵格、智能化高級論壇論文集[C];2009年
3 陳強;孫振國;;計算機視覺在焊接中的應(yīng)用[A];第十次全國焊接會議論文集(第1冊)[C];2001年
4 田涌濤;洪錫軍;王有慶;李從心;;計算機視覺在先進制造技術(shù)中的應(yīng)用[A];面向制造業(yè)的自動化與信息化技術(shù)創(chuàng)新設(shè)計的基礎(chǔ)技術(shù)——2001年中國機械工程學(xué)會年會暨第九屆全國特種加工學(xué)術(shù)年會論文集[C];2001年
5 劉敏娟;洪添勝;李震;吳偉斌;劉志壯;;基于計算機視覺的荔枝檢測與分級方法[A];紀(jì)念中國農(nóng)業(yè)工程學(xué)會成立30周年暨中國農(nóng)業(yè)工程學(xué)會2009年學(xué)術(shù)年會(CSAE 2009)論文集[C];2009年
6 孫潔瓊;孫明;;基于計算機視覺的水果外觀品質(zhì)檢測分級研究現(xiàn)狀[A];中國農(nóng)業(yè)工程學(xué)會電氣信息與自動化專業(yè)委員會、中國電機工程學(xué)會農(nóng)村電氣化分會科技與教育專委會2010年學(xué)術(shù)年會論文摘要[C];2010年
7 王劃一;王效良;;計算機視覺在絎縫機自動編程及控制中的應(yīng)用[A];第二十屆中國控制會議論文集(下)[C];2001年
8 周紅;劉光蓉;;計算機視覺及其在谷物籽粒檢測分級中的應(yīng)用[A];中國糧油學(xué)會第三屆學(xué)術(shù)年會論文選集(下冊)[C];2004年
9 吳彥紅;劉木華;楊君;鄭華東;;大米外觀品質(zhì)的計算機視覺在線檢測技術(shù)研究[A];農(nóng)業(yè)機械化與新農(nóng)村建設(shè)——中國農(nóng)業(yè)機械學(xué)會2006年學(xué)術(shù)年會論文集(下冊)[C];2006年
10 張慶敏;于龍;;計算機視覺在接觸網(wǎng)定位器坡度識別中的應(yīng)用[A];高速鐵路接觸網(wǎng)零部件安全可靠性技術(shù)論文集[C];2013年
相關(guān)重要報紙文章 前9條
1 記者 李大慶;我在國際計算機視覺算法競賽中摘金[N];科技日報;2011年
2 滕繼濮;不放過一個“壞蛋”[N];糧油市場報;2011年
3 ;生活中的計算機視覺[N];中國計算機報;2006年
4 王悅承;逾30篇中國論文入選ICCV[N];中國計算機報;2005年
5 本報記者 滕繼濮;無損檢測技術(shù):不放過一個“壞蛋”[N];科技日報;2011年
6 本報記者 薛娟;未來搜索:沒有搜索的搜索[N];中國經(jīng)濟時報;2010年
7 記者 楊杰 實習(xí)記者 李樂;農(nóng)機領(lǐng)域喜獲四項大獎[N];中國農(nóng)機化導(dǎo)報;2009年
8 張明平 記者 趙鳳華;蘋果的氣味“看”出來[N];科技日報;2009年
9 記者 常麗君;新軟件能“預(yù)測”你各年齡段長相[N];科技日報;2014年
相關(guān)博士學(xué)位論文 前10條
1 王強;基于幾何代數(shù)的計算機視覺問題研究[D];國防科學(xué)技術(shù)大學(xué);2013年
2 王任大;基于計算機視覺的手勢交互技術(shù)及其在航海中的應(yīng)用[D];大連海事大學(xué);2014年
3 賀文驊;基于計算機視覺的復(fù)雜場景下目標(biāo)跟蹤研究[D];西安電子科技大學(xué);2015年
4 王愛麗;基于計算機視覺的行人交通信息智能檢測理論和關(guān)鍵技術(shù)研究[D];北京交通大學(xué);2016年
5 潘磊慶;基于計算機視覺和聲學(xué)技術(shù)融合檢測雞蛋品質(zhì)的研究[D];南京農(nóng)業(yè)大學(xué);2007年
6 孔明;顆粒粒徑和形態(tài)計算機視覺測量方法研究[D];東南大學(xué);2005年
7 劉釗;基于計算智能的計算機視覺及其應(yīng)用研究[D];武漢科技大學(xué);2011年
8 李慶中;蘋果自動分級中計算機視覺信息快速獲取與處理技術(shù)的研究[D];中國農(nóng)業(yè)大學(xué);2000年
9 謝存;計算機視覺中若干問題實現(xiàn)技術(shù)和算法的研究[D];大連理工大學(xué);2002年
10 趙書濤;基于計算機視覺的直讀儀表校驗方法研究[D];華北電力大學(xué)(河北);2006年
相關(guān)碩士學(xué)位論文 前10條
1 王福香;基于計算機視覺的馬鈴薯外部缺陷檢測方法研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2015年
2 余饒東;基于腦波與計算機視覺的注意力檢測技術(shù)在E-Learning中的應(yīng)用研究[D];昆明理工大學(xué);2015年
3 李想;基于計算機視覺的花卉分級系統(tǒng)研究[D];天津理工大學(xué);2015年
4 吳林林;基于計算機視覺的皮革測配色研究[D];陜西科技大學(xué);2015年
5 龍怡霖;基于計算機視覺的雜草種子鑒別[D];西北農(nóng)林科技大學(xué);2015年
6 謝艷鵬;面向細胞行為辨識的計算機視覺研究與應(yīng)用[D];沈陽理工大學(xué);2015年
7 丁僑俊;基于計算機視覺的智能停車場引導(dǎo)系統(tǒng)研究[D];福建師范大學(xué);2015年
8 王鵬博;多態(tài)并行機上的OpenVX系統(tǒng)實現(xiàn)[D];西安郵電大學(xué);2015年
9 周志強;基于計算機視覺的指針式電表校驗的關(guān)鍵技術(shù)研究[D];南昌大學(xué);2015年
10 陳玉潔;基于計算機視覺的外膜厚度測量方法的研究[D];南昌航空大學(xué);2015年
,本文編號:2216917
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2216917.html