寬帶高速信號檢測與頻域測量技術(shù)研究
[Abstract]:Electronic support is a special military reconnaissance means to obtain enemy's military information, which plays an extremely important role in the field of radar countermeasures. With the rapid development of radar technology, the number of radar continues to grow. In modern electronic warfare environment, radar signals become increasingly dense and the forms of signals become more complex. With the development of signal to broadband and high frequency, the traditional signal processing methods are limited by the electronic bottleneck of the sampled devices, which will be difficult to meet the future battlefield requirements. In recent years, scholars at home and abroad have done some research on the high-speed sampling of signals. Compressive sensing theory and microwave photonics have attracted wide attention in reducing the sampling rate of the system. Quantity compressed sampling data completes the task of signal detection and parameter estimation; microwave photon technology combines photon technology with microwave technology to realize wideband, low loss, anti-electromagnetic interference microwave signal processing system. Odulated, LFM) signal detection and parameter estimation performance and the application of optical sampling technology in the instantaneous frequency measurement of high frequency microwave signal are analyzed and studied. Some solutions are proposed. The main contributions and research contents of this paper include: 1. LFM signal detection algorithm based on waveform matching dictionary under compressed sensing framework. In this paper, a novel LFM signal detection algorithm based on Fractional Fourier Transform (FrFT) dictionary is proposed to solve the problem that the detection performance is greatly affected by Gaussian white noise. Transform the dictionary, and then use the orthogonal matching pursuit algorithm to reconstruct the coefficient vector of the signal in the fractional Fourier transform dictionary. Finally, detect and judge the coefficient vector to achieve the purpose of signal detection. The number of points and the lower SNR (Signal-to-Noise Ratio) can improve the probability of signal detection success. 2. In order to solve the problem that the performance of LFM signal detection algorithm based on fractional Fourier transform dictionary is seriously affected by narrowband interference signals, a morphological component analysis method is introduced and a Cascade-based LFM signal detection algorithm is proposed. Based on the principle of morphological component analysis, the algorithm constructs a fractional Fourier transform dictionary and a Fourier transform dictionary, cascades them into a redundant dictionary, and reconstructs the coefficient vector of the signal in the cascaded dictionary by orthogonal matching pursuit algorithm, and then separates the signal from the interference. It is shown that the algorithm can effectively suppress narrowband interference signals. Compared with the algorithm based on fractional Fourier dictionary, the algorithm can obtain higher probability of signal detection success in the presence of narrowband interference signals. In order to estimate the parameters of LFM signals seriously affected by Gaussian white noise and strong narrowband interference signals, a two-search strategy based on fractional Fourier transform dictionary is proposed. The optimal fractional Fourier transform order of the LFM signal is obtained to estimate the frequency modulation slope and the initial frequency of the LFM signal. The experimental results show that the proposed algorithm can obtain a higher probability of success in signal parameter estimation with fewer compression sampling points and lower SNR than the algorithm based on the waveform matching dictionary. This paper presents an improved LFM signal parameter estimation algorithm based on two-search strategy of order Fourier transform dictionary. The algorithm takes advantage of the fact that LFM signal is sparse in time-frequency domain and fractional Fourier transform domain. First, the order of transformation is in time-frequency domain. The optimal fractional Fourier transform order of LFM signal is obtained by coarse search in frequency domain, and then the estimation of FM slope and initial frequency of LFM signal is obtained. Compared with the algorithm based on waveform matching dictionary, the algorithm can also obtain higher probability of signal parameter estimation success under the same SNR and compressed sampling points. 5. An instantaneous frequency measurement algorithm of high frequency microwave signal based on microwave photonics is studied. An instantaneous frequency measurement algorithm for high frequency microwave signals based on optical sampling is proposed, which uses optical intensity modulator to modulate high frequency microwave signals to low repetition rate sampled optical pulses to achieve optical sampling of high frequency microwave signals. Combining FFT with Chirp-z Transform (CZT), the frequency remainder generated under the condition of under-sampling is estimated accurately, and then the signal frequency is reconstructed by using the Chinese remainder theorem. The experimental results show that the algorithm can accurately measure the signal frequency in 39 GHz bandwidth.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN957.51
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張隆閣;;一類參數(shù)不確定混沌系統(tǒng)的分?jǐn)?shù)階自適應(yīng)同步[J];中國科技信息;2009年15期
2 張隆閣;;一類混沌系統(tǒng)的分?jǐn)?shù)階廣義同步[J];自動化博覽;2009年07期
3 林浩;羅懋康;;基于分?jǐn)?shù)階微(積)分的一種降噪和白化方法[J];信息通信;2012年01期
4 劉艷芹;;一類分?jǐn)?shù)階非線性振子方程的特性研究[J];計算機工程與應(yīng)用;2012年16期
5 鄺鈺;吳潤;李巖;;分?jǐn)?shù)階控制器實現(xiàn)方法研究[J];航天控制;2012年04期
6 沈?qū)W舉;單透鏡實現(xiàn)非精確分?jǐn)?shù)階付里葉變換[J];光電子·激光;1999年03期
7 趙義正,楊景曙;離散分?jǐn)?shù)階Fourier變換的實現(xiàn)及有限字長效應(yīng)分析[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2005年03期
8 劉艷芹;;一類分?jǐn)?shù)階種群擴散模型解的研究[J];計算機工程與應(yīng)用;2012年24期
9 鄧兵,陶然,齊林,劉鋒;分?jǐn)?shù)階Fourier變換與時頻濾波[J];系統(tǒng)工程與電子技術(shù);2004年10期
10 陳光明;陶華;蒲繼雄;;分?jǐn)?shù)階無衍射光束的實驗研究[J];量子電子學(xué)報;2011年05期
相關(guān)會議論文 前10條
1 李西成;;經(jīng)皮吸收的分?jǐn)?shù)階藥物動力學(xué)模型[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
2 謝勇;;分?jǐn)?shù)階模型神經(jīng)元的動力學(xué)行為及其同步[A];第四屆全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2010年
3 張碩;于永光;王亞;;帶有時滯和隨機擾動的不確定分?jǐn)?shù)階混沌系統(tǒng)準(zhǔn)同步[A];中國力學(xué)大會——2013論文摘要集[C];2013年
4 李常品;;分?jǐn)?shù)階動力學(xué)的若干關(guān)鍵問題及研究進(jìn)展[A];中國力學(xué)大會——2013論文摘要集[C];2013年
5 李常品;;分?jǐn)?shù)階動力學(xué)簡介[A];第三屆海峽兩岸動力學(xué)、振動與控制學(xué)術(shù)會議論文摘要集[C];2013年
6 蔣曉蕓;徐明瑜;;時間依靠分?jǐn)?shù)階Schr銉dinger方程中的可動邊界問題[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
7 王花;;分?jǐn)?shù)階混沌系統(tǒng)的同步在圖像加密中的應(yīng)用[A];第二屆全國隨機動力學(xué)學(xué)術(shù)會議摘要集與會議議程[C];2013年
8 王在華;;分?jǐn)?shù)階動力系統(tǒng)的若干問題[A];第三屆全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2009年
9 張碩;于永光;王莎;;帶有時滯和隨機擾動的分?jǐn)?shù)階混沌系統(tǒng)同步[A];第十四屆全國非線性振動暨第十一屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議摘要集與會議議程[C];2013年
10 李西成;;一個具有糊狀區(qū)的分?jǐn)?shù)階可動邊界問題的相似解研究[A];中國力學(xué)大會——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 陳善鎮(zhèn);兩類空間分?jǐn)?shù)階偏微分方程模型有限差分逼近的若干研究[D];山東大學(xué);2015年
2 任永強;油藏與二氧化碳埋存問題的數(shù)值模擬與不確定性量化分析以及分?jǐn)?shù)階微分方程的數(shù)值方法[D];山東大學(xué);2015年
3 蔣敏;分?jǐn)?shù)階微分方程理論分析與應(yīng)用問題的研究[D];電子科技大學(xué);2015年
4 卜紅霞;基于分?jǐn)?shù)階傅里葉域稀疏表征的CS-SAR成像理論與算法研究[D];北京理工大學(xué);2015年
5 楊變霞;分?jǐn)?shù)階Laplace算子的譜理論及其在微分方程中的應(yīng)用[D];蘭州大學(xué);2015年
6 邵晶;幾類微分系統(tǒng)的定性理論及其應(yīng)用[D];曲阜師范大學(xué);2015年
7 方益;分?jǐn)?shù)階Yamabe問題的一些緊性結(jié)果[D];中國科學(xué)技術(shù)大學(xué);2015年
8 王國濤;幾類分?jǐn)?shù)階非線性微分方程解的存在理論及應(yīng)用[D];西安電子科技大學(xué);2014年
9 陳明華;分?jǐn)?shù)階微分方程的高階算法及理論分析[D];蘭州大學(xué);2015年
10 孟偉;基于分?jǐn)?shù)階拓展算子的灰色預(yù)測模型[D];南京航空航天大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 楚彩虹;單載波分?jǐn)?shù)階傅里葉域均衡系統(tǒng)及關(guān)鍵技術(shù)研究[D];鄭州大學(xué);2015年
2 張欣欣;Caputo型分?jǐn)?shù)階神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[D];燕山大學(xué);2015年
3 楊晶;帶分?jǐn)?shù)階邊界條件的分?jǐn)?shù)階微分方程邊值問題[D];天津財經(jīng)大學(xué);2015年
4 王琳莉;分?jǐn)?shù)階Hamilton系統(tǒng)的運動方程和對稱性理論研究[D];浙江理工大學(xué);2016年
5 陳秀凱;基于移位Jacobi多項式求解三類變分?jǐn)?shù)階非線性微積分方程[D];燕山大學(xué);2015年
6 紀(jì)翠翠;時間分?jǐn)?shù)階偏微分方程高階數(shù)值解法[D];東南大學(xué);2015年
7 董菁菁;分?jǐn)?shù)階長短波方程的長時間行為[D];魯東大學(xué);2016年
8 崔曉玉;幾類分?jǐn)?shù)階擴散方程中線性方程組的預(yù)處理迭代解法[D];華東師范大學(xué);2016年
9 吳亞運;幾類分?jǐn)?shù)階微分方程解的存在性研究[D];安徽大學(xué);2016年
10 曹玉童;兩類分?jǐn)?shù)階差分方程解對初值的連續(xù)依賴性[D];安徽大學(xué);2016年
,本文編號:2216709
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2216709.html