條紋陣列探測激光雷達測距精度與三維測繪技術(shù)研究
[Abstract]:The stripe array detection lidar has many advantages, such as long range, wide detection field, large range depth and high data rate. It has important application prospects in three-dimensional reconstruction of long-range targets and airborne wide-range mapping. In this paper, the ranging accuracy and three-dimensional mapping technology of the stripe array detection lidar are studied theoretically and experimentally. Based on the range resolution principle and the cascade imaging process of the column detection lidar, combining with the lidar equation and the linear spread function of the detector, the theoretical expression of the signal distribution function in a single time-resolved channel is derived. The noise characteristics of radar system are classified and discussed according to the correlation between noise and signal strength. The theoretical expressions of mean and variance of multiplicative noise and additive noise are given respectively. Then the theoretical model of noisy fringe signal is established to analyze and detect the ranging accuracy of the system. According to the imaging characteristics of the stripe array detection lidar, two working modes, constant transmitting power and near saturation imaging, are established in the signal detection process, so that more ideal original stripe images can be obtained at different detection distances and application requirements. The theoretical model of ranging accuracy is established by using the error transfer theory. The theoretical expressions of additive noise error, multiplicative noise error and sampling error are deduced under two different operating modes respectively. The theoretical model of ranging accuracy is simulated and verified by experiment. In the simulation, the relationship between the three main errors and the key parameters of the system is discussed by simulating the process of laser emission, receiving and signal acquisition of the detector. The principle validation system of fringe array detection lidar with selective control of noise sources is presented, and the effect of fringe width on ranging accuracy is discussed emphatically. The experimental results show that the error caused by multiplicative noise increases linearly with the increase of fringe width and the error caused by additive noise does not with the fringe width under constant transmitting power mode. The error caused by multiplicative noise is directly proportional to the square root of the fringe width and the error caused by additive noise is inversely proportional to the fringe width in near saturation imaging mode. Distance precision optimization methods: (1) The parameter optimization method based on the optimal fringe width is studied, and the theoretical expression and numerical results of the optimal fringe width under different operating modes are given. After parameter optimization, the system can reconstruct the range profile of 1.7 km long-range target at a distance gate width of 173 m, and reduce the ranging root mean square error to 0.19 M. (2) A new method is proposed in the range extraction process of fringe image. Based on the simulation results, the influence of threshold setting on ranging accuracy under different fringe widths and noise intensities is discussed, and the empirical formula of the optimal threshold is established, and the interference of strong background noise on range profile in outfield mapping is suppressed by the optimal threshold method. (3) The optimal scheme of time slot width is discussed. The experimental results show that higher ranging accuracy can be achieved by reducing the time slot width while the width of the distance gate is enough to cover the depth of field of the target to be measured. By introducing Gaussian weighting factor, this algorithm can effectively suppress the boundary blur effect caused by fringe dispersion in the adjacent channel, and realize the accurate recognition of 1.4 km target feature details. When the fringe width is 4.4ns, the RMS error of the system can be reduced to 0.15m after 15 iterations. The range precision of the mapping result is better than the minimum range resolution of the system, and the super-resolution imaging of the fringe array detection lidar is realized. Finally, a set of three-dimensional mapping system for the ground based on the aircraft platform is established. According to the optimization method of ranging accuracy and the results of echo intensity calculation, the selection of operating mode and the selection of key parameters of the system at different flight altitudes are discussed. The coverage of the laser footprint to the surveying and mapping area under the scanning system is analyzed by combining with the digital elevation map simulation. The ranging deviation caused by the non-uniformity of the scanning electric field of the detector and the horizontal positioning deviation caused by the non-linearity of the scanning trajectory of the laser footprint are calibrated and corrected. The gate width is 173m and the data rate is 500kHz. At the flight altitudes of 3000m and 5800m, the RMS error of ranging can reach 0.11M and 0.16m, respectively. The detection time for surveying and mapping the plain area of 30km2 is 2 minutes and 13 seconds, which is nearly 10 times more efficient than the traditional broom scanning system.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TN958.98
【相似文獻】
相關(guān)期刊論文 前10條
1 洪名家;±1米激光測距機測距精度的分析[J];激光;1978年Z1期
2 陳早維;張濤;王健;;提高激光測距精度方法的研究[J];大眾科技;2013年11期
3 謝俊;張萍;薛樂群;;距離及脈寬變化對定壓比較測距精度的影響[J];江蘇技術(shù)師范學院學報;2013年04期
4 喬強;提高測距精度的方法研究[J];無線電工程;1997年05期
5 羅韓君;元秀華;;光子脈沖外差探測系統(tǒng)的測距精度[J];中國激光;2013年12期
6 羅韓君;周仁龍;張禹濤;;光子雷達探測性能與測距精度的理論研究[J];激光技術(shù);2014年03期
7 ;關(guān)于脈沖激光測距精度的初步分析[J];激光與紅外;1977年09期
8 李建華;李田科;于仕財;康健;;提高雷達測距精度的實用方法探討[J];海軍航空工程學院學報;2012年03期
9 胡以華,薛永祺,何永清;機載掃描激光測距精度的研究[J];量子電子學報;1999年03期
10 劉嘉興;;深空測距信號短穩(wěn)對測距精度的影響[J];空間電子技術(shù);2012年02期
相關(guān)會議論文 前3條
1 王陸瀟;黃智剛;趙昀;李銳;;GPS用戶測距精度的表示變化及影響分析[A];第二屆中國衛(wèi)星導航學術(shù)年會電子文集[C];2011年
2 郜鍵;孫劍峰;魏靖松;王騏;;基于條紋管激光成像雷達水下目標探測研究[A];魯豫贛黑蘇五省光學(激光)學會2011學術(shù)年會論文摘要集[C];2011年
3 蔡明生;郭建華;謝明鋼;鄭春曉;;碲鋅鎘陣列探測器最新結(jié)果[A];第二十五屆全國空間探測學術(shù)研討會摘要集[C];2012年
相關(guān)博士學位論文 前8條
1 葉光超;條紋陣列探測激光雷達測距精度與三維測繪技術(shù)研究[D];哈爾濱工業(yè)大學;2016年
2 劉施菲;激光雷達輔助的慣性導航組合系統(tǒng)技術(shù)研究[D];哈爾濱工程大學;2015年
3 王強;基于激光雷達數(shù)據(jù)與多角度遙感模型的森林參數(shù)反演研究[D];哈爾濱工業(yè)大學;2017年
4 徐璐;Gm-APD脈沖累積激光雷達探測性能提高的研究[D];哈爾濱工業(yè)大學;2017年
5 呂丹;基于點法向量姿態(tài)估計的激光雷達距離像目標識別算法研究[D];哈爾濱工業(yè)大學;2016年
6 張敬金;大物面X射線條紋管電子光學設計與實驗研究[D];深圳大學;2017年
7 郜鍵;條紋管激光成像雷達海面小尺度波探測探潛技術(shù)研究[D];哈爾濱工業(yè)大學;2014年
8 徐帆;陣列調(diào)制激光三維成像雷達編解碼及信號處理技術(shù)研究與實現(xiàn)[D];南京大學;2016年
相關(guān)碩士學位論文 前10條
1 林輝;基于車載多激光雷達的地圖構(gòu)建與障礙物檢測[D];浙江大學;2017年
2 楊凡;基于無人機激光雷達和高光譜的冬小麥生物量反演研究[D];西安科技大學;2017年
3 陳昊;基于光纖延遲線的激光測距儀測距精度檢測系統(tǒng)[D];南京理工大學;2016年
4 郭美靈;激光雷達測距的峰值估計與測距精度分析[D];南京理工大學;2013年
5 趙代民;多狹縫條紋管激光成像系統(tǒng)數(shù)據(jù)處理技術(shù)研究[D];哈爾濱工業(yè)大學;2008年
6 盧靜怡;三維激光成像系統(tǒng)中高精度測距技術(shù)的研究[D];北京交通大學;2013年
7 王佳;基于單目視頻路徑與激光雷達的移動機器人導航方法研究[D];鄭州大學;2017年
8 梁小雪;條紋管激光雷達偏振成像實驗研究[D];哈爾濱工業(yè)大學;2010年
9 魏靖松;條紋管激光三維成像技術(shù)研究[D];哈爾濱工業(yè)大學;2007年
10 秦學珍;基于小波分析的激光雷達信號消噪和氣溶膠粒子譜反演算法研究[D];北方民族大學;2017年
,本文編號:2216359
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2216359.html