變拓?fù)浣Y(jié)構(gòu)下多智能體系統(tǒng)的追蹤問題
[Abstract]:Multi-agent systems can provide a good modeling and control method for large-scale, real complex systems with complex relationships between individuals, and have a wide range of industrial and practical potential. Therefore, in recent years, multi-agent coordinated control as a frontier subject in the field of complex systems and control science has been concerned. Nonlinear multi-agent systems under structures are extremely complex and difficult to study. So far, there are not many researches on the consistency of multi-agent systems which consider both nonlinear and continuous time-varying topologies. In addition, the relative distance between the agents will change in real time because of the different velocities in the process of the agents'movement. Because of the limited wireless communication distance and the instability of the wireless communication itself, the communication topology between the agents will change in real time, so the nonlinear multi-agent is studied. It is very important to study the tracking problem of multi-agent systems under time-varying topology. Specifically, the main contents of this paper are as follows: (1) To study the multi-agent tracking problem under first-order, second-order and high-order nonlinear continuous time-varying topology. The dynamic models of moving targets and tracking agents are first-order and second-order, respectively. Consistency tracking of multi-agent systems under continuous time-varying topology is studied in the case of order and higher-order nonlinear models. By using graph theory and matrix analysis, the Laplacian matrix of system communication topology is analyzed to obtain the successful tracking conditions for its eigenvalues. The topology of a multi-agent system changes continually rather than switching between several fixed topologies. (2) The continuous time-varying topology is described by using the polytopic model. The Laplacian matrix of the time-varying topology is represented by the polytopic model, and the time-varying topology is modeled as a finite number of veracities. The Laplacian matrix and the corresponding scheduling function are combined. The introduction of this model makes the existence of the tracking strategy of multi-agent systems under time-varying topology be transformed into the solvability of linear matrix inequalities. (3) The tracking problem of high-order multi-agent systems with delay is studied. In addition to position, velocity and acceleration, there is also a degree of urgency in the system. In the actual system, the transmission of information between multiple agents through wireless communication takes a certain amount of time, even transmission failure, which leads to the emergence of delay. Therefore, the study of multi-agent system with delay is of great practical significance. Nowadays, the existence of delay does not necessarily degrade the performance of the system. If a suitable controller can be designed to ensure the stability of the system, the delay may improve the system performance and shorten the tracking time of the agent system, that is, compared with the system without delay, the tracking agent can successfully track the target agent in a shorter time. (4) Sliding mode control The tracking time is a key performance index in the tracking problem of multi-agent system. It is an important problem to shorten the tracking time when designing the controller. Sliding mode control technology is applied to the controller design of nonlinear systems, and many applications are needed. Good results have been achieved in the application. Therefore, it is applied to the multi-agent system control with time-varying topology, and the time-varying sliding mode controller is designed. The control effect of the multi-agent sliding mode controller is verified by simulation. Compared with the conventional controller, the application of the sliding mode controller shortens the tracking time and improves the tracking effect. Target relay tracking problem of multi-agent system with Voronoi map partitioned region is studied. The multi-agent tracking problem in multi-target situation is studied. It is assumed that many agent nodes are set up in a specific region to ensure that each region in the region can be monitored by at least three agents at the same time, so as to achieve target location. The theory of noi diagram divides the monitoring area into many Voronoi units. When the target enters different Voronoi units, the tracking agent switches, that is, realizing the relay tracking of the target agent. In addition, the problem of relay tracking with unstable subsystems based on Voronoi graph is studied. The unstable subsystems of multi-agent system with event-triggered switching topology are studied. Tracking subsystems are stable. It is a challenging problem to design controllers and to ensure the stability of the whole tracking system when the switching frequency and the duration of the unstable subsystems are satisfied.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP18;TP13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何濤;白振興;;多智能體系統(tǒng)設(shè)計(jì)的關(guān)鍵技術(shù)研究[J];現(xiàn)代電子技術(shù);2006年14期
2 寇鳳梅;崔劍波;張晶晶;;基于結(jié)構(gòu)優(yōu)化的節(jié)能型多智能體系統(tǒng)[J];甘肅科學(xué)學(xué)報(bào);2008年04期
3 ;第5屆全國(guó)多智能體系統(tǒng)與控制會(huì)議通知[J];智能系統(tǒng)學(xué)報(bào);2009年02期
4 洪奕光;翟超;;多智能體系統(tǒng)動(dòng)態(tài)協(xié)調(diào)與分布式控制設(shè)計(jì)[J];控制理論與應(yīng)用;2011年10期
5 陳小平;徐紅兵;李彤;;多智能體系統(tǒng)旋轉(zhuǎn)一致控制[J];宇航學(xué)報(bào);2011年12期
6 肖麗;包駿杰;;基于局部交互協(xié)議的二階離散多智能體系統(tǒng)一致性[J];重慶教育學(xué)院學(xué)報(bào);2012年03期
7 劉金琨,王樹青;復(fù)雜實(shí)時(shí)動(dòng)態(tài)環(huán)境下的多智能體系統(tǒng)[J];控制與決策;1998年S1期
8 楊飛飛;;二階多智能體系統(tǒng)快速一致性分析[J];今日科苑;2011年03期
9 胡志剛,劉歐,鐘掘;一個(gè)多智能體系統(tǒng)平臺(tái)的構(gòu)造[J];計(jì)算機(jī)工程;2000年11期
10 薛宏濤,沈林成,朱華勇,常文森;基于協(xié)進(jìn)化的多智能體系統(tǒng)仿真框架及其面向?qū)ο笤O(shè)計(jì)與實(shí)現(xiàn)[J];機(jī)器人;2001年05期
相關(guān)會(huì)議論文 前10條
1 楊熙;王金枝;;多智能體系統(tǒng)一致性的魯棒性分析[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
2 張亞;田玉平;;離散時(shí)間多智能體系統(tǒng)一致的權(quán)重條件[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)B卷[C];2011年
3 張文廣;郭振凱;;一類高階多智能體系統(tǒng)的一致控制研究[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)C卷[C];2011年
4 肖晴;許維勝;吳啟迪;;多智能體系統(tǒng)用于企業(yè)集成[A];1998年中國(guó)控制會(huì)議論文集[C];1998年
5 楊熙;王金枝;;Leader-Follower結(jié)構(gòu)下多智能體系統(tǒng)一致性的魯棒性能分析[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
6 劉華罡;方浩;毛昱天;曹虎;賈睿;;多智能體系統(tǒng)分布式群集運(yùn)動(dòng)與避障控制[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
7 賀晨龍;黃麗湘;張繼業(yè);;多車輛編隊(duì)協(xié)作控制[A];第十一屆全國(guó)非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2007年
8 薛棟;姚靜;余有靈;胡俊杰;;具有切換拓?fù)浜头蔷性環(huán)節(jié)的關(guān)聯(lián)多智能體系統(tǒng)一致性分析[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
9 楊洪勇;路蘭;李曉;;時(shí)延多智能體系統(tǒng)的群集運(yùn)動(dòng)[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
10 李韜;張紀(jì)峰;;一類多智能體系統(tǒng)的漸近最優(yōu)分散控制[A];第25屆中國(guó)控制會(huì)議論文集(上冊(cè))[C];2006年
相關(guān)博士學(xué)位論文 前10條
1 王振華;具有通信時(shí)滯的線性多智能體系統(tǒng)的趨同[D];山東大學(xué);2015年
2 鄭寶杰;多智能體系統(tǒng)若干包含控制問題研究[D];鄭州大學(xué);2015年
3 張方方;多智能體系統(tǒng)分布式優(yōu)化控制[D];山東大學(xué);2015年
4 龍曉軍;多智能體系統(tǒng)的有限時(shí)間一致性跟蹤[D];大連海事大學(xué);2015年
5 楊新榮;廣義多智能體系統(tǒng)的一致性問題研究[D];哈爾濱工業(yè)大學(xué);2015年
6 夏紅;多智能體系統(tǒng)群一致性與編隊(duì)控制研究[D];電子科技大學(xué);2014年
7 李金沙;多智能體系統(tǒng)一致性學(xué)習(xí)協(xié)議的設(shè)計(jì)與分析[D];西安電子科技大學(xué);2015年
8 黃捷;高階非線性多智能體系統(tǒng)一致性控制研究[D];北京理工大學(xué);2015年
9 楊大鵬;多智能體系統(tǒng)的事件驅(qū)動(dòng)一致性控制與多Lagrangian系統(tǒng)的分布式協(xié)同[D];北京理工大學(xué);2015年
10 范銘燦;多智能體系統(tǒng)的一致性及編隊(duì)控制研究[D];華中科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 孟亞偉;一類具有時(shí)滯和領(lǐng)導(dǎo)者的二階多智能體系統(tǒng)的一致性[D];重慶師范大學(xué);2013年
2 劉孝琪;多智能體系統(tǒng)一致性及其在蜂擁控制中的應(yīng)用研究[D];電子科技大學(xué);2013年
3 王琛陽(yáng);帶領(lǐng)導(dǎo)者的多智能體系統(tǒng)一致性問題研究[D];河北大學(xué);2015年
4 陳小龍;基于量化信息的多智能體系統(tǒng)狀態(tài)估計(jì)[D];西南交通大學(xué);2015年
5 王航飛;基于事件驅(qū)動(dòng)的多智能體系統(tǒng)的環(huán)形編隊(duì)控制研究[D];華北電力大學(xué);2015年
6 陳文秀;離散時(shí)間廣義多智能體系統(tǒng)的容許一致性[D];溫州大學(xué);2015年
7 張文濤;多智能體系統(tǒng)分布式協(xié)調(diào)控制的相關(guān)問題研究[D];浙江師范大學(xué);2015年
8 曹偉俊;帶有擾動(dòng)的多智能體系統(tǒng)的一致性研究[D];北京化工大學(xué);2015年
9 成照萌;多智能體系統(tǒng)的模型預(yù)測(cè)控制[D];華中科技大學(xué);2015年
10 張賀;基于隨機(jī)影響的多智能體系統(tǒng)的一致性與同步[D];重慶理工大學(xué);2015年
,本文編號(hào):2214922
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2214922.html