社會(huì)化網(wǎng)絡(luò)集群結(jié)構(gòu)分析及動(dòng)態(tài)演化模型研究
[Abstract]:Social networks are virtual networks that can describe real social activities. The clustering results of the virtual networks represent the state of real social groups, which may naturally form for some reason (family members, colleagues or the same interests, etc.). The network structure can reveal the characteristics and development trends of the real society. Although the analysis of the distribution of nodes in the community and the association between communities can help to get the information of user characteristics and network topology, the diversity and complexity of personas and relationships lead to the node attributes and nodes in the social network. Because of the diversity and complexity of point-to-point association, the study of social network structure can not be limited to non-overlapping classification, clustering and other algorithms. If the only valuable knowledge in a social network is the network structure, then the characteristics of a node are the feature sets of all its edges. Social networks allow users to generate personalized data independently, and rich user information is conducive to the full analysis of user characteristics. However, the data generated by users is not standardized and the process of information generation is uncontrollable, so the data is large-scale and low-quality. Therefore, it is more difficult to manage complex network information, and its processing objects can not be limited to written knowledge. We must attach importance to the central node or expert node with a large amount of domain knowledge. It can provide high-quality information for complex networks and expand the effective knowledge reserve of networks.In addition, focusing on core nodes similar to central nodes can help to know the law of information transmission, predict the development trend of network structure, and analyze the probability of node state change.Because the social network is a dynamic network, the stability of the analysis algorithm needs to be improved. Control within a reasonable range, that is, the algorithm is too stable to be sensitive to new data, on the contrary, the algorithm is vulnerable to the impact of temporary information and the wrong division of nodes. Digging algorithms pose challenges, but whether it is social search, personalized recommendation, or multi-role relocation, knowledge mapping is built on the basis of social networks, which is not possible for all network platforms in the past. With the advancement of mobile network technology, social network presents micro-information and mobile features, making the network more comprehensive coverage of life, so the study of social network has attracted more and more researchers, enterprises and government departments'attention. In any case, the low operating costs of social networks, as well as more sticky services, are changing the traditional pattern of the Internet. Temporary attributes and the ability of nodes to maintain their inherent state are used to propose a stable community partitioning algorithm. The algorithm proposed in this paper is not only based on the new data or the existing characteristics of nodes, but also considers the historical data of network topology, the ability of nodes to maintain their inherent state and the degree of change of new data to calculate the state. Secondly, an attribute-based EDGE-BINDING algorithm is proposed to show the complex network structure in a clearer way, which will be similar to the edge-feeding. Thirdly, taking the analyzed object as the central node, the probability of association between the node and the existing path but not directly connected nodes is calculated, so that the effective knowledge of the network can be reasonably expanded to make up for the small data problem of deterministic events, and then according to the belonging of the edges. Fourthly, an information retrieval method for users with more knowledge in the field of interest is proposed, that is, to discover expert users by constructing user interest distribution curve and calculating slope at critical point. Fifthly, a knowledge representation method and an architecture fusion strategy are proposed to discover implicit semantic relationships by mining the structure of multiple documents. This method greatly reduces the computational complexity of the algorithm and improves the accuracy of text matching. Sixthly, a Bayesian network is constructed to reduce the complexity of the probability model, and the influence between nodes in the low density network is analyzed in advance. The method calculates the degree of mutual influence between nodes according to the three different association forms and the shortest distance between users, analyzes the degree of state change of adjacent nodes, and predicts the action trend of central nodes. Finally, the experimental parts of each chapter are introduced in different data sets. The proposed algorithm is compared with other similar algorithms, and the results are visualized and the advantages and differences are explained in detail to verify the feasibility and correctness of the algorithm.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP393.09
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王萍;;社會(huì)化網(wǎng)絡(luò)的信息擴(kuò)散研究[J];情報(bào)雜志;2009年10期
2 吳yP昕;吳波;張明;;社會(huì)化網(wǎng)絡(luò)隱患對(duì)國家信息安全的影響[J];當(dāng)代傳播;2010年01期
3 李遵白;;社會(huì)化網(wǎng)絡(luò)時(shí)代輿情變動(dòng)的基本機(jī)制與科學(xué)管理研究[J];前沿;2010年21期
4 翟旭瑾;;博客的社會(huì)化網(wǎng)絡(luò)連接對(duì)社會(huì)發(fā)展的影響[J];內(nèi)蒙古統(tǒng)戰(zhàn)理論研究;2013年01期
5 肖們;;社會(huì)化網(wǎng)絡(luò)中基于真實(shí)虛擬關(guān)系的營銷分析[J];現(xiàn)代傳播(中國傳媒大學(xué)學(xué)報(bào));2013年09期
6 翟旭瑾;;博客的社會(huì)化網(wǎng)絡(luò)連接對(duì)社會(huì)發(fā)展的影響[J];金田;2013年01期
7 肖們;;社會(huì)化網(wǎng)絡(luò)的發(fā)展與文化產(chǎn)業(yè)的演進(jìn)特征[J];湖南師范大學(xué)社會(huì)科學(xué)學(xué)報(bào);2014年04期
8 曹三省;;網(wǎng)人合一,物我不二:社會(huì)化網(wǎng)絡(luò)媒體模式技術(shù)演進(jìn)與模式變革[J];中國傳媒科技;2012年09期
9 趙林靜;;社會(huì)化網(wǎng)絡(luò)環(huán)境下圖書館內(nèi)容營銷策略研究[J];中國民航飛行學(xué)院學(xué)報(bào);2013年03期
10 ;關(guān)注[J];程序員;2008年04期
相關(guān)會(huì)議論文 前3條
1 周宇煜;;移動(dòng)社會(huì)化網(wǎng)絡(luò)業(yè)務(wù)發(fā)展趨勢(shì)和商業(yè)模式探討[A];2007年中國通信學(xué)會(huì)“移動(dòng)增值業(yè)務(wù)與應(yīng)用”學(xué)術(shù)年會(huì)論文集[C];2007年
2 張銳;;網(wǎng)絡(luò)媒體的現(xiàn)狀與變局[A];數(shù)字未來與媒介社會(huì)1[C];2010年
3 陳熹;徐曉杰;冒然;;社會(huì)化網(wǎng)絡(luò)下的自我表露:風(fēng)險(xiǎn)效用決策模型[A];第五屆(2010)中國管理學(xué)年會(huì)——信息管理分會(huì)場(chǎng)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 喬文心;社會(huì)化網(wǎng)絡(luò)改變世界[N];青島日?qǐng)?bào);2013年
2 吳加錄;預(yù)知個(gè)性需求 社會(huì)化網(wǎng)絡(luò)推動(dòng)智能搜索[N];中國計(jì)算機(jī)報(bào);2008年
3 浙江大學(xué) 吳朝暉;社會(huì)管理須關(guān)注社會(huì)化網(wǎng)絡(luò)創(chuàng)新[N];科技日?qǐng)?bào);2011年
4 張丹;社會(huì)化網(wǎng)絡(luò)在檔案管理中的運(yùn)用[N];黃河報(bào);2011年
5 本報(bào)記者 董瀟;社會(huì)化網(wǎng)絡(luò)主宰互聯(lián)網(wǎng)[N];中華工商時(shí)報(bào);2011年
6 見習(xí)記者 趙曉悅;海銀:“孵”出下一個(gè)facebook?[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2012年
7 王超;市檢察院積極構(gòu)建預(yù)防職務(wù)犯罪社會(huì)化網(wǎng)絡(luò)[N];四平日?qǐng)?bào);2006年
8 本報(bào)記者 毛晶慧;開心網(wǎng)郭。荷鐣(huì)化網(wǎng)絡(luò)營銷理性爬坡[N];中國經(jīng)濟(jì)時(shí)報(bào);2011年
9 姜姝;把脈“Facebook魔力”[N];中國電腦教育報(bào);2007年
10 記者 文峰 實(shí)習(xí)生 彭瀲;推廣“社團(tuán)矯治”戒毒新模式[N];重慶日?qǐng)?bào);2005年
相關(guān)博士學(xué)位論文 前3條
1 劉樹棟;基于位置的移動(dòng)社會(huì)化網(wǎng)絡(luò)推薦技術(shù)研究[D];北京郵電大學(xué);2015年
2 國琳;社會(huì)化網(wǎng)絡(luò)集群結(jié)構(gòu)分析及動(dòng)態(tài)演化模型研究[D];吉林大學(xué);2016年
3 吳超;在線社會(huì)化網(wǎng)絡(luò)的語義分析和語義社會(huì)網(wǎng)的構(gòu)建[D];浙江大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 任軍虎;移動(dòng)圖書館戶服務(wù)交互研究[D];西安電子科技大學(xué);2014年
2 張宗宇;社會(huì)化網(wǎng)絡(luò)的鏈接預(yù)測(cè)[D];北京郵電大學(xué);2011年
3 宋薇;社會(huì)化網(wǎng)絡(luò)用戶行為研究與應(yīng)用[D];西安電子科技大學(xué);2013年
4 馬艷艷;社會(huì)化網(wǎng)絡(luò)中的社團(tuán)發(fā)現(xiàn)與應(yīng)用[D];西安電子科技大學(xué);2013年
5 賈曉英;運(yùn)用社會(huì)化網(wǎng)絡(luò)開展大學(xué)生思想政治教育研究[D];湖南科技大學(xué);2011年
6 崔明慧;公民社會(huì)議題下網(wǎng)絡(luò)虛擬自我認(rèn)同初探[D];山東大學(xué);2012年
7 張圣超;社會(huì)化網(wǎng)絡(luò)資源融合的人脈手機(jī)應(yīng)用設(shè)計(jì)[D];上海交通大學(xué);2014年
8 徐原;基于情境感知的移動(dòng)社會(huì)化網(wǎng)絡(luò)研究與設(shè)計(jì)[D];大連海事大學(xué);2010年
9 凌文倩;西安志勝機(jī)電有限公司傳統(tǒng)招聘與社會(huì)化網(wǎng)絡(luò)招聘的比較研究[D];西北農(nóng)林科技大學(xué);2014年
10 酆愛文;社會(huì)化網(wǎng)絡(luò)學(xué)習(xí)的研究[D];天津大學(xué);2012年
,本文編號(hào):2211429
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2211429.html