幾類(lèi)多智能體系統(tǒng)的量化一致性和包圍控制
[Abstract]:As the distributed coordinated control of multi-agent systems has potential applications in many fields, it has become a hot topic in the research of complex systems, and has been widely concerned by researchers in different fields. In a multi-agent system, individuals work together to complete a complex task by communicating and cooperating with each other. With the more and more extensive application of digital system in information transmission and processing, it is of great practical significance to study the effect of quantization error on system performance. In this paper, we study two kinds of distributed coordinated control problems in multi-agent systems: quantization consistency problem and bounding control problem. The main research contents are as follows: 1. The quantization consistency problem of multi-agent systems with nonlinear dynamics is studied. For first and second order nonlinear multi-agent systems, a distributed protocol based on relative state quantization between neighbor agents is designed. Under the continuous time protocol, a sufficient condition for the system to solve the consistency is obtained by using the non-smooth analysis tool. Under the pulse protocol, it is proved that the state of all agents can be consistent by selecting the appropriate control gain and pulse interval under certain quantizer precision. The quantization consistency problem of heterogeneous multi-agent systems composed of first and second order integrator agents is studied. A distributed protocol based on relative position quantization and absolute velocity quantization between neighbors is designed. By using graph theory and Lassar invariant set principle, it is proved that the system can asymptotically achieve static consistency when using logarithmic quantizer. When the uniform quantizer is used, the velocity of the second order agent converges to zero by selecting the appropriate control gain, and the relative position of the agents converges to a bounded region. 3. The quantization consistency problem of switched multi-agent system is studied. The switched multi-agent system in this paper consists of continuous time subsystem and discrete time subsystem. For first-order and second-order switched multi-agent systems, a distributed protocol based on relative state quantization between neighbor agents is designed. For first-order switched multi-agent systems, sufficient conditions for the system to be consistent in arbitrary handoff are obtained. For a second-order switched multi-agent system, it is proved that for any given pulse interval, the state of all agents can be consistent with .4by selecting appropriate control gain and sufficiently small quantizer accuracy. The bounding control problem of switched multi-agent system is studied. A distributed protocol based on relative state value between neighbors is designed for each agent. By means of graph theory and stability theory, the necessary and sufficient conditions of bounding control are obtained for switched multi-agent systems with static and dynamic navigators respectively.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何濤;白振興;;多智能體系統(tǒng)設(shè)計(jì)的關(guān)鍵技術(shù)研究[J];現(xiàn)代電子技術(shù);2006年14期
2 寇鳳梅;崔劍波;張晶晶;;基于結(jié)構(gòu)優(yōu)化的節(jié)能型多智能體系統(tǒng)[J];甘肅科學(xué)學(xué)報(bào);2008年04期
3 ;第5屆全國(guó)多智能體系統(tǒng)與控制會(huì)議通知[J];智能系統(tǒng)學(xué)報(bào);2009年02期
4 洪奕光;翟超;;多智能體系統(tǒng)動(dòng)態(tài)協(xié)調(diào)與分布式控制設(shè)計(jì)[J];控制理論與應(yīng)用;2011年10期
5 陳小平;徐紅兵;李彤;;多智能體系統(tǒng)旋轉(zhuǎn)一致控制[J];宇航學(xué)報(bào);2011年12期
6 肖麗;包駿杰;;基于局部交互協(xié)議的二階離散多智能體系統(tǒng)一致性[J];重慶教育學(xué)院學(xué)報(bào);2012年03期
7 劉金琨,王樹(shù)青;復(fù)雜實(shí)時(shí)動(dòng)態(tài)環(huán)境下的多智能體系統(tǒng)[J];控制與決策;1998年S1期
8 楊飛飛;;二階多智能體系統(tǒng)快速一致性分析[J];今日科苑;2011年03期
9 胡志剛,劉歐,鐘掘;一個(gè)多智能體系統(tǒng)平臺(tái)的構(gòu)造[J];計(jì)算機(jī)工程;2000年11期
10 薛宏濤,沈林成,朱華勇,常文森;基于協(xié)進(jìn)化的多智能體系統(tǒng)仿真框架及其面向?qū)ο笤O(shè)計(jì)與實(shí)現(xiàn)[J];機(jī)器人;2001年05期
相關(guān)會(huì)議論文 前10條
1 楊熙;王金枝;;多智能體系統(tǒng)一致性的魯棒性分析[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
2 張亞;田玉平;;離散時(shí)間多智能體系統(tǒng)一致的權(quán)重條件[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專(zhuān)業(yè)委員會(huì)B卷[C];2011年
3 張文廣;郭振凱;;一類(lèi)高階多智能體系統(tǒng)的一致控制研究[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專(zhuān)業(yè)委員會(huì)C卷[C];2011年
4 肖晴;許維勝;吳啟迪;;多智能體系統(tǒng)用于企業(yè)集成[A];1998年中國(guó)控制會(huì)議論文集[C];1998年
5 楊熙;王金枝;;Leader-Follower結(jié)構(gòu)下多智能體系統(tǒng)一致性的魯棒性能分析[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
6 劉華罡;方浩;毛昱天;曹虎;賈睿;;多智能體系統(tǒng)分布式群集運(yùn)動(dòng)與避障控制[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
7 賀晨龍;黃麗湘;張繼業(yè);;多車(chē)輛編隊(duì)協(xié)作控制[A];第十一屆全國(guó)非線(xiàn)性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國(guó)非線(xiàn)性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2007年
8 薛棟;姚靜;余有靈;胡俊杰;;具有切換拓?fù)浜头蔷(xiàn)性環(huán)節(jié)的關(guān)聯(lián)多智能體系統(tǒng)一致性分析[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
9 楊洪勇;路蘭;李曉;;時(shí)延多智能體系統(tǒng)的群集運(yùn)動(dòng)[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
10 李韜;張紀(jì)峰;;一類(lèi)多智能體系統(tǒng)的漸近最優(yōu)分散控制[A];第25屆中國(guó)控制會(huì)議論文集(上冊(cè))[C];2006年
相關(guān)博士學(xué)位論文 前10條
1 王振華;具有通信時(shí)滯的線(xiàn)性多智能體系統(tǒng)的趨同[D];山東大學(xué);2015年
2 鄭寶杰;多智能體系統(tǒng)若干包含控制問(wèn)題研究[D];鄭州大學(xué);2015年
3 張方方;多智能體系統(tǒng)分布式優(yōu)化控制[D];山東大學(xué);2015年
4 龍曉軍;多智能體系統(tǒng)的有限時(shí)間一致性跟蹤[D];大連海事大學(xué);2015年
5 楊新榮;廣義多智能體系統(tǒng)的一致性問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2015年
6 夏紅;多智能體系統(tǒng)群一致性與編隊(duì)控制研究[D];電子科技大學(xué);2014年
7 李金沙;多智能體系統(tǒng)一致性學(xué)習(xí)協(xié)議的設(shè)計(jì)與分析[D];西安電子科技大學(xué);2015年
8 黃捷;高階非線(xiàn)性多智能體系統(tǒng)一致性控制研究[D];北京理工大學(xué);2015年
9 楊大鵬;多智能體系統(tǒng)的事件驅(qū)動(dòng)一致性控制與多Lagrangian系統(tǒng)的分布式協(xié)同[D];北京理工大學(xué);2015年
10 范銘燦;多智能體系統(tǒng)的一致性及編隊(duì)控制研究[D];華中科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 孟亞偉;一類(lèi)具有時(shí)滯和領(lǐng)導(dǎo)者的二階多智能體系統(tǒng)的一致性[D];重慶師范大學(xué);2013年
2 劉孝琪;多智能體系統(tǒng)一致性及其在蜂擁控制中的應(yīng)用研究[D];電子科技大學(xué);2013年
3 陳小龍;基于量化信息的多智能體系統(tǒng)狀態(tài)估計(jì)[D];西南交通大學(xué);2015年
4 卜斌;網(wǎng)絡(luò)化多智能體系統(tǒng)快速一致性研究[D];浙江理工大學(xué);2016年
5 楊曉惠;一類(lèi)混沌系統(tǒng)同步及二階多智能體系統(tǒng)一致性設(shè)計(jì)[D];大連海事大學(xué);2016年
6 李e,
本文編號(hào):2209435
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2209435.html