面向云計算的多維數(shù)據(jù)索引研究
[Abstract]:The widespread application of cloud computing technology makes the data explosively increasing, and brings new challenges to the traditional data management technology. The existing cloud storage systems generally use the form of distributed hash table to access data. This key-value-based model can obtain higher access efficiency in single-dimensional query, but it is more efficient than multi-dimensional query. When users submit multi-dimensional queries based on multiple attribute columns, due to the lack of effective secondary index system support, it is necessary to run the MapReduce task to scan the entire data set, thus reducing the query efficiency. Tables are presented at international top-level conferences and journals in the database field. This paper studies the multi-dimensional data indexing technology in the cloud computing environment. The main contents of this paper are summarized as follows: 1. To solve the problem that the existing cloud storage systems mainly support single-key index and lack effective multi-dimensional index, which leads to low efficiency of multi-dimensional query, this paper proposes a new multi-dimensional cloud data index scheme based on UB tree: CloudUB. Then, the dimension of the query is reduced, and the multi-dimensional space is divided into Z-region along Z-curve, and the Z-region information is organized by B+tree to establish an improved UB tree index. CloudUB can filter out the data space which can not contain the query results based on Z-region, so as to improve the query efficiency. In addition, the index construction and dimension based on HBase are designed. The mechanism saves B+leaf nodes based on Z-curve dimensionality reduction in HBase and transforms the original multi-dimensional search problem into a key-value query problem that can be supported by existing cloud storage systems, thus supporting high concurrent access to index tables by MapReduce technology. Based on Hadoop version 2.2, the test results of 10 million level data show that CloudUB index scheme supports flexible and efficient real-time index construction, and the efficiency of multi-dimensional query is significantly improved. 2. Through the in-depth study of data management in cloud computing system, this paper proposes a new method. KD-R, a two-tier multi-dimensional data index that conforms to the master-slave management of cloud computing system, establishes an R-tree index for local data on each data server in the cloud computing system. All local R-tree indexes together form the underlying index of the double-tier index system, and then part of the nodes of each R-tree index are sent to each other. To solve the problem of which local index nodes are published to the global index, this paper designs an adaptive node publishing algorithm and a cost model for selecting publishing nodes, which can estimate the index cost of local index nodes. The cost model periodically detects the index nodes on the local data server, and then adjusts the published local index nodes by using the adaptive node publishing algorithm to dynamically optimize the KD-R index. The experimental results show that the multi-dimensional query algorithm based on KD-R index has high memory utilization and query efficiency. 3. In view of the elasticity of users'needs and the fact that query dimensions are dynamically extended in cloud computing systems, this paper proposes a multi-dimensional cloud data index: CB-index based on Chord overlay network and zonal bitmap. At the same time, this paper designs a partitioned bitmap encoding mechanism, builds a local data index on the local data server through the partitioned bitmap, and realizes the combination of local index nodes and the Chord overlay network. In addition, an adaptive index node adjustment algorithm, a multi-dimensional query algorithm and an index maintenance algorithm are also designed. The experimental results show that CB-index index has high efficiency in multi-dimensional query and can avoid the complete reconstruction of index structure. It supports flexible index dimension expansion and is able to meet users' dynamic query requirements in cloud computing environment.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP311.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;本期廣告商索引表[J];電子與電腦;2000年01期
2 ;本期編輯內(nèi)容產(chǎn)品索引表[J];電子與電腦;2000年02期
3 ;本期廣告商索引表[J];電子與電腦;2000年02期
4 ;本期編輯內(nèi)容產(chǎn)品索引表[J];電子與電腦;2000年04期
5 ;本期廣告商索引表[J];電子與電腦;2000年04期
6 ;本期編輯內(nèi)容產(chǎn)品索引表[J];電子與電腦;2000年11期
7 ;本期廣告商索引表[J];電子與電腦;2000年11期
8 ;本期編輯內(nèi)容產(chǎn)品索引表[J];電子與電腦;1999年05期
9 ;本期編輯內(nèi)容產(chǎn)品索引表[J];電子與電腦;1999年08期
10 ;本期編輯內(nèi)容產(chǎn)品索引表[J];電子與電腦;1999年09期
相關(guān)會議論文 前9條
1 石瑋峰;楊冬青;唐世渭;關(guān)濤;;COBASE的索引管理技術(shù)[A];第十二屆全國數(shù)據(jù)庫學(xué)術(shù)會議論文集[C];1994年
2 王彥祥;王廣林;;“索引之星”的研制和索引編制[A];2004年辭書與數(shù)字化研討會論文集[C];2004年
3 王曉輝;王柏;;通過有效使用索引優(yōu)化Oracle應(yīng)用系統(tǒng)性能[A];第九屆全國青年通信學(xué)術(shù)會議論文集[C];2004年
4 孫云峰;陳渝;史元春;張寶鵬;張曦;江文峰;;基于高精度室內(nèi)定位系統(tǒng)的移動物體軌跡索引[A];第二屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2006)——第2屆中國普適計算學(xué)術(shù)會議(PCC'06)論文集[C];2006年
5 王先勝;喬健;汪衛(wèi);何震瀛;;AX-Tree:基于RDBMS的粒度自適應(yīng)XML數(shù)據(jù)索引[A];第二十五屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(一)[C];2008年
6 邵雄凱;盧炎生;程學(xué)先;;用建立本地廣播索引表的方法改善移動客戶機(jī)的性能[A];第二十屆全國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2003年
7 薛巍;李維佳;穆飛;舒繼武;;PDPI:一種面向多核的可擴(kuò)展并行索引算法[A];全國網(wǎng)絡(luò)與信息安全技術(shù)研討會論文集(下冊)[C];2007年
8 王鵬飛;洪曉光;;基于XML大文檔的動態(tài)索引[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
9 楊彬;洪曉光;;基于XML大文檔的動態(tài)索引[A];’2004計算機(jī)應(yīng)用技術(shù)交流會議論文集[C];2004年
相關(guān)重要報紙文章 前1條
1 裘宗燕;輕松做索引[N];中華讀書報;2002年
相關(guān)博士學(xué)位論文 前5條
1 何婧;面向云計算的多維數(shù)據(jù)索引研究[D];電子科技大學(xué);2016年
2 馬武彬;面向信息物理融合系統(tǒng)的資源索引構(gòu)建和查詢優(yōu)化技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
3 張帆;搜索引擎中索引表求交和提前停止技術(shù)優(yōu)化研究[D];南開大學(xué);2012年
4 陳旭毅;基于索引云的企業(yè)搜索引擎實現(xiàn)研究[D];武漢大學(xué);2011年
5 余利華;分布式數(shù)據(jù)存儲和處理的若干技術(shù)研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 周文輝;基于HBase和內(nèi)存數(shù)據(jù)庫的索引和查詢技術(shù)研究與系統(tǒng)實現(xiàn)[D];南京大學(xué);2014年
2 付佳;基于LSM樹的NoSQL數(shù)據(jù)庫索引研究[D];北京理工大學(xué);2016年
3 王萬樂;基于聚類的海量文檔集分布式索引構(gòu)建方法[D];山東大學(xué);2016年
4 王健;DWMS中索引選擇策略的研究與實現(xiàn)[D];東華大學(xué);2010年
5 胡玉樂;列存儲DWMS中的索引關(guān)鍵技術(shù)研究[D];東華大學(xué);2011年
6 張慧;一種基于位立方體的XML索引方式[D];山東大學(xué);2007年
7 王學(xué);面向SaaS應(yīng)用交付平臺的多租戶數(shù)據(jù)索引研究[D];山東大學(xué);2012年
8 石有滴;XML索引關(guān)鍵技術(shù)研究[D];華南理工大學(xué);2011年
9 陳堅強(qiáng);DB2數(shù)據(jù)庫索引性能調(diào)整與優(yōu)化[D];上海交通大學(xué);2011年
10 葛付江;面向動態(tài)文檔集的大規(guī)模文本索引構(gòu)建技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2008年
,本文編號:2193230
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2193230.html