具有執(zhí)行器非線性和狀態(tài)約束的機器人自適應(yīng)控制
[Abstract]:With the cross-disciplinary development of information, machinery, materials and so on, robots have shown good application potential and strong market demand in assisting or even replacing human beings in coordinating work. Therefore, the research of robot technology has not only obvious application prospects, but also important theoretical value. It is described as a multi-degree-of-freedom motion/force hybrid nonlinear system, focusing on how to deal with the uncertainties such as actuator nonlinearity and state constraints, aiming at improving the control performance of the robot. The structure of this paper is arranged as follows. Chapter 1 describes the relevant research background and research significance. Chapter 2 outlines the modeling and control of the robot system. Chapters 3 to 7 consist of five chapters, which are the main contents of this paper, including three aspects: 1) Chapters 3 to 4 mainly study the adaptive fuzzy coordinated control of robot with actuator nonlinearity; 2) Chapter 5 studies the adaptive control of generalized actuator nonlinearity robot based on Nussbaum function method. Chapters 6 to 7 mainly study the adaptive neural network coordinated control with state constraints. Specifically, these five chapters correspond to the following contents in turn: 1. The coordinated control problem of robot grasping object in the case of actuator clearance nonlinearity is studied, and a motion/force compensating actuator clearance is proposed. Firstly, based on the idea of backlash nonlinear inverse compensation, an inverse model adaptive control method for actuator backlash is constructed. Then, a decentralized robust adaptive fuzzy coordination control method is established to ensure that the motion and internal force of the object converge to the expected value respectively. Finally, the proposed method is applied to a two-arm robot system. The results of simulation and comparison with the existing methods show that the proposed method is effective. Secondly, the coordinated control problem of multi-manipulator under actuator hysteresis nonlinearity and motion constraints is studied, and a robot adaptive fuzzy control scheme based on Barrier Lyapunov function method is proposed. The hysteresis model is established in the dynamic equation of the manipulator, and then the adaptive control technique is introduced to compensate and reduce the influence of the unknown hysteresis nonlinearity. The qualitative theorem guarantees the motion and force control performance of the proposed method in the coordination process of multiple manipulators. Finally, several groups of comparison results show the effectiveness of the proposed method. The proposed method not only extends the unknown control coefficients from constants to time variables, but also removes the known assumptions of the upper and lower bounds of the control coefficients. The state of the robot system converges asymptotically to the desired trajectory in the case of generalized actuator nonlinearity. Furthermore, to reduce the control jitter caused by the use of traditional Nussbaum functions, a control method based on saturated Nussbaum functions is proposed. The proposed Nussbaum functions are constructed based on the idea of time expansion and reduce the traditional amplitude expansion Nus. In addition, by combining with the adaptive control method, a control method is established to deal with multiple unknown time-varying control coefficients, which facilitates the stability analysis of MIMO systems and guarantees the asymptotic tracking of the motion state of the robot system under unknown actuator dynamics. Fourthly, the problem of state hysteresis constraints caused by the output mechanism in the coordinated control of two manipulators is studied. An adaptive neural network controller is proposed to realize the coordinated control of robot motion and force. At the same time, combining with the adaptive neural network control method, the upper bound of neural network weight matrix is estimated, the number of adaptive laws to be updated is reduced, and the computational load to complete the real-time control is reduced. The results of performance comparison and evaluation further validate the effectiveness, superiority and robustness of the proposed method. Fifthly, the problem of coordinated control of multi-manipulators with unknown output dead-time constraints and uncertainties is studied, and a motion/force adaptive neural network coordinated control method for multi-manipulators is proposed. By using the Lyapunov stability theory, the motion and internal force control in the coordinated operation of multiple manipulators are proved. Finally, simulation results illustrate the effectiveness of the proposed method.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP242
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;2001恩格爾伯格機器人獎頒布[J];機器人技術(shù)與應(yīng)用;2001年05期
2 ;神奇的機器人世界[J];機電新產(chǎn)品導(dǎo)報;2001年Z5期
3 宋樹藩;采用機器人的有效自動化[J];世界制造技術(shù)與裝備市場;2001年06期
4 ;創(chuàng)造出色的機器人[J];個人電腦;2003年04期
5 ;危險作業(yè)機器人——人類的好幫手——訪國家863機器人技術(shù)主題專家組專家戴先中教授[J];機器人技術(shù)與應(yīng)用;2003年03期
6 小才;;機器人時代[J];電腦愛好者;2006年13期
7 宋海宏;;機器人技術(shù)展望[J];山西煤炭管理干部學(xué)院學(xué)報;2006年04期
8 董煬斌;蔣靜坪;何衍;;一種基于雙令牌的多機器人協(xié)作策略研究[J];計算機工程;2007年12期
9 王國奎;劉彥波;;草方格鋪設(shè)機器人綜合、高效控制系統(tǒng)的設(shè)計[J];科技咨詢導(dǎo)報;2007年20期
10 陳秀珍;潘拓;;21世紀(jì)初機器人技術(shù)的走向[J];中國設(shè)備工程;2007年11期
相關(guān)會議論文 前10條
1 楊朝虹;張海珠;;機器人技術(shù)的應(yīng)用與發(fā)展[A];先進(jìn)制造技術(shù)論壇暨第五屆制造業(yè)自動化與信息化技術(shù)交流會論文集[C];2006年
2 王明輝;王楠;李斌;;面向災(zāi)難救援的機器人控制站系統(tǒng)設(shè)計[A];中國儀器儀表學(xué)會第十二屆青年學(xué)術(shù)會議論文集[C];2010年
3 郭戈;王燕;王偉;;一種多機器人協(xié)作方法[A];第二十屆中國控制會議論文集(下)[C];2001年
4 崔世鋼;邴志剛;彭商賢;王玉東;;基于遠(yuǎn)程腦概念的服務(wù)機器人開發(fā)平臺的設(shè)計與研究[A];先進(jìn)制造技術(shù)論壇暨第二屆制造業(yè)自動化與信息化技術(shù)交流會論文集[C];2003年
5 楊瑩;丁X;許侃;;國際機器人科學(xué)知識前沿演化的可視化分析[A];科學(xué)學(xué)理論與科學(xué)計量學(xué)探索——全國科學(xué)技術(shù)學(xué)暨科學(xué)學(xué)理論與學(xué)科建設(shè)2008年聯(lián)合年會論文集[C];2008年
6 唐矯燕;趙群飛;黃杰;楊汝清;;基于兩足步行椅機器人的人在環(huán)中的助殘機器人控制系統(tǒng)[A];第二十六屆中國控制會議論文集[C];2007年
7 薛頌東;曾建潮;杜靜;;具運動學(xué)特性約束的群機器人目標(biāo)搜索[A];2009中國控制與決策會議論文集(2)[C];2009年
8 張國偉;李斌;龔海里;王聰;鄭懷兵;;廢墟洞穴搜救機器人控制軟件設(shè)計與實現(xiàn)[A];中國儀器儀表學(xué)會第十二屆青年學(xué)術(shù)會議論文集[C];2010年
9 崔世鋼;方景林;劉嘉q;彭商賢;邴志剛;;服務(wù)機器人開發(fā)中測控問題的研究[A];中國儀器儀表學(xué)會第五屆青年學(xué)術(shù)會議論文集[C];2003年
10 吳國盛;李云霞;李驪;;一種基于極坐標(biāo)系下的機器人動態(tài)避碰算法[A];2006中國控制與決策學(xué)術(shù)年會論文集[C];2006年
相關(guān)重要報紙文章 前10條
1 冬冬;看看自動化機器人在包裝業(yè)中能起多大作用[N];中國包裝報;2005年
2 莽九晨 周之然;有感“機器人道德法”[N];人民日報;2007年
3 記者 陳琳;機器人總動員[N];第一財經(jīng)日報;2010年
4 記者 孫亞斐;千余支隊伍攜機器人亮相金城[N];蘭州日報;2011年
5 崔鑫;機器人也能和您一起下廚[N];北京科技報;2012年
6 特約記者 楊保國;中國科大“藍(lán)鷹”稱雄機器人世界杯[N];大眾科技報;2007年
7 本報記者 陳淑娟;機器人走近生活[N];計算機世界;2006年
8 虎虎;科學(xué)好玩(三)[N];四川科技報;2007年
9 孫潛彤;新松公司:在機器人研發(fā)領(lǐng)域顯身手[N];經(jīng)濟日報;2008年
10 財宣邋Q孟推,
本文編號:2193112
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2193112.html