基于鏡頭及場景上下文的短視頻標(biāo)注方法研究
[Abstract]:With the rapid development of digital media technology, communication technology and network technology, the number of digital media information represented by video is expanding rapidly. Short video is a kind of video data with a lot of content. How to find effective information in a large amount of short video data has always been a problem of concern to users, resulting in video indexing, video retrieval and other related applications. Video tagging is the core of these applications. At present, video tagging has become a hot research topic in the field of digital media applications and computer vision. From the semantic point of view, video can be divided into several semantic units. Different semantic units have different semantic connotations and can realize semantic annotation at each semantic level. Based on the in-depth analysis of the video structure, the video segment is segmented to form different semantic units, and the short video is annotated in the shot semantic layer and scene semantic layer. The main achievements and innovations of this paper are as follows: (1) combining the global and local features of video frames, a novel shot edge detection method combining video dynamic texture and SIFT features is proposed. In this method, two adjacent frames are partitioned evenly, and the average gradient of each image block in the frame is calculated in RGB color space. The video dynamic texture is formed by the average gradient of all image blocks. The dynamic texture of adjacent frames is compared and the shot change is judged by matching the SIFT features of adjacent frames. This algorithm can detect the shot edge of different types of video data with high accuracy. (2) A video semantic annotation model based on shot events is proposed. Based on the analysis of the video structure, the background color features of the moving object and the key frame of the shot are extracted to express the event of a shot, which extends to the expression of the scene event. Ultimately, the collection of all events is the subject of a video clip. The model takes the event group composed of the shot moving object and the environment background as the annotation result. The annotation model represents the semantic connotation of shot and improves the accuracy of video semantic expression. (3) A new method of video annotation based on semi-supervised clustering is proposed. In the unit of shot event, the video is annotated with event group. In order to reduce the dependence of video tagging on labeled samples, semi-supervised K-means clustering algorithm is constructed by semi-supervised learning idea, and the objective function is optimized, so that the final clustering results can not only reflect the low coupling between classes and high aggregation within classes. It also reflects the local data distribution density in the class. This algorithm implements the clustering of multi-attribute heterogeneous data such as video, and improves the accuracy of video tagging. (4) A new context-based multi-core learning video classification method is proposed. Based on the traditional word bag model, a video scene classification model is proposed according to the correlation between the adjacent shot key frames. Firstly, the video segment is segmented, the key frame is extracted, and the key frame image is normalized. Then the key frame image is used as the image block to synthesize the new image with temporal relation, and the SIFT feature and HSV color feature of the new image are extracted, and the SIFT feature and HSV color feature data of the image are mapped to Hilbert space. Through multi-kernel learning, the appropriate kernel function groups are selected to train each image, and finally the classification model is obtained, and a better classification effect is obtained. These research results can be widely used in many fields such as video classification, video indexing, video retrieval, video content understanding, video data management and so on, which have important theoretical significance and high application value.
【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陸懿;陳光夢;畢宏杰;董棟;;改進(jìn)的自然動(dòng)態(tài)紋理綜合算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2008年14期
2 姚偉光;王贏;許存祿;;將局部二進(jìn)制模式應(yīng)用于動(dòng)態(tài)紋理識(shí)別的新方法[J];微計(jì)算機(jī)信息;2010年09期
3 陳昌紅;趙恒;胡海虹;梁繼民;;基于改進(jìn)動(dòng)態(tài)紋理模型的人體運(yùn)動(dòng)分析[J];模式識(shí)別與人工智能;2010年02期
4 陳青;朱俊宇;唐朝暉;劉金平;桂衛(wèi)華;;動(dòng)態(tài)紋理建模在硫浮選工況的識(shí)別分析[J];計(jì)算機(jī)與應(yīng)用化學(xué);2013年10期
5 邵婧;王冠香;郭蔚;;基于視頻動(dòng)態(tài)紋理的火災(zāi)檢測[J];中國圖象圖形學(xué)報(bào);2013年06期
6 陳紅倩;陳誼;曹健;劉鸝;;基于動(dòng)態(tài)紋理技術(shù)的實(shí)時(shí)森林繪制[J];計(jì)算機(jī)仿真;2012年06期
7 何莎;費(fèi)樹岷;;動(dòng)態(tài)紋理背景的建模[J];計(jì)算機(jī)應(yīng)用;2009年S2期
8 鄒運(yùn)蘭;王仁芳;;基于多重紋理和動(dòng)態(tài)紋理技術(shù)的實(shí)時(shí)水面模擬[J];浙江萬里學(xué)院學(xué)報(bào);2010年06期
9 陳紅倩;李鳳霞;黃天羽;戰(zhàn)守義;;一種基于動(dòng)態(tài)紋理的運(yùn)動(dòng)場景可視化方法[J];北京理工大學(xué)學(xué)報(bào);2009年06期
10 于鑫;韓勇;陳戈;;基于動(dòng)態(tài)紋理和粒子系統(tǒng)的火焰效果模擬[J];信息與電腦(理論版);2009年11期
相關(guān)會(huì)議論文 前1條
1 陸懿;陳光夢;;一種改進(jìn)的彩色動(dòng)態(tài)紋理綜合算法[A];中國儀器儀表學(xué)會(huì)第九屆青年學(xué)術(shù)會(huì)議論文集[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 王勇;基于混沌特征向量的動(dòng)態(tài)紋理識(shí)別[D];上海交通大學(xué);2014年
2 彭太樂;基于鏡頭及場景上下文的短視頻標(biāo)注方法研究[D];上海大學(xué);2016年
3 周丙寅;張量分解及其在動(dòng)態(tài)紋理中的應(yīng)用[D];河北師范大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 陸懿;一種改進(jìn)的基于非線性模型的動(dòng)態(tài)紋理識(shí)別算法[D];復(fù)旦大學(xué);2008年
2 徐磊磊;動(dòng)態(tài)紋理性質(zhì)及其模擬算法研究[D];華中科技大學(xué);2007年
3 姚偉光;基于局部二進(jìn)制運(yùn)動(dòng)模式的動(dòng)態(tài)紋理描述新方法[D];蘭州大學(xué);2009年
4 周文玲;增強(qiáng)現(xiàn)實(shí)中動(dòng)態(tài)紋理的識(shí)別與重建技術(shù)研究[D];華東師范大學(xué);2011年
5 劉霞;自然景物模擬的動(dòng)態(tài)紋理研究與實(shí)現(xiàn)[D];國防科學(xué)技術(shù)大學(xué);2005年
6 丁悅;基于數(shù)據(jù)驅(qū)動(dòng)的馬爾柯夫鏈蒙特卡洛模型的動(dòng)態(tài)紋理分析[D];南京理工大學(xué);2007年
7 曹壽剛;基于李群論和動(dòng)態(tài)紋理的視頻分類技術(shù)研究[D];華中科技大學(xué);2013年
8 高平;基于擴(kuò)展統(tǒng)計(jì)地形特征的動(dòng)態(tài)紋理識(shí)別研究[D];蘭州大學(xué);2009年
9 施濵;基于時(shí)空方向能量的動(dòng)態(tài)紋理研究[D];上海交通大學(xué);2012年
10 張茜;基于動(dòng)態(tài)紋理的流水效果合成技術(shù)研究[D];山東大學(xué);2006年
,本文編號(hào):2174386
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2174386.html