基于社交大數(shù)據的用戶信用畫像方法研究
[Abstract]:In recent years, mobile Internet and social media have sprung up, gradually replacing traditional blogs, BBS forums, as the main platform for people to socialize, learn, and entertain. At the same time, with the wide acceptance of the whole society, especially the mobile Internet, the number of connected users and the user generated data (UGC). Explosive growth. Compared with previous Internet media technologies (such as mail, forums, blogs), social media records are more rich in data, timely and more timeliness. In particular, micro-blog type social media data has become a public platform for information release, interuser interaction, and event discovery diffusion. In order to make full use of this data source, the academic community has carried out a wide range of social network theory, user behavior patterns, public event development rules, and rumor discovery detection methods, in order to make full use of this data source. In general, the valuable information contained in the large data of social media requires new data processing and analytical methods to solve them. However, new challenges and problems have been formed by the short length, poor quality, rapid change and weak correlation of the social media data, which makes the traditional data mining methods incapable. In response to the challenges of "sequence", "behavioural" and "multi source" in social media data, the goal of a user credit portrait based on social data is better implemented. This paper carries out an efficient sequence mining algorithm for micro-blog type data, based on the user's credit portrait of the implicit behavior model of micro-blog users, based on feature design and integrated learning fusion. Research on three aspects of user credit portrait of multi source information. In addition, in the research process of user credit image algorithm under micro-blog data, this paper makes a summary and prospect for the user portrait algorithm on social large data. In particular, the main research content, innovation and academic contributions of this paper include the following three aspects: 1) Micro-blog data is presented to the user in the form of time line (Timeline), which is essentially an event type sequence data. Event sequence data mining, in addition to considering the frequency of the project (item), also starts to consider the utility of the project (utility), and then implements efficient fragment mining. This paper proposes a multiple optimization strategy for the existing high utility episode mining algorithm, which makes the algorithm running speed and memory efficiency improved on a large scale. More important, the word sequence prefix tree mining framework introduced in this paper has a tighter pruning threshold value estimation, which makes the event sequence efficient use of events. Fragment mining algorithm becomes fast and practical (third chapter).2) every micro-blog in micro-blog data contains text content and context information related to user behavior. Text and behavior two data sources can provide data support for user's credit model at the same time, but simple feature extraction is then used. In order to realize the user's credit picture based on the behavior pattern, this paper, through the modeling method of the probability graph model, combines the observable user text with a variety of behavior features to obtain the user's implicit behavior pattern which provides input for the prediction of the letter. The probabilistic theme model, LUBD-CM, is designed to assume that a micro-blog is generated by the same topic and that both the behavior data and the text data on micro-blog are constrained by the assigned topic. The experimental results show that the LUBD-CM model is a simplified variant of the LUBD-CM, the traditional LDA, and the simple Bayes algorithm, for the prediction performance of the user credit label. Promotion (fourth chapter).3) user data on social platform, except user generated content, including user personal information, social network relationship. Different sources of user social data contain different types of information related to user credit. However, the "immediacy" of micro-blog social data causes the data quality to be generally very low and difficult to be used as a standard. Quasi classifier such as SVM, the input of the decision tree and the higher user tag prediction performance. In order to fuse the effective information of the credit picture in the multi-source heterogeneous social data, this paper, starting with the personal credit related domain knowledge, analyzes a wide variety of possible feature design schemes to select better social features and use the double layer integration. Learning framework, fully mining the effective information hidden in a variety of social characteristics, so as to realize the comprehensive stack method, the promotion method and the integration method user credit picture prediction system (fifth chapter). It is worth mentioning that the series data mining for micro-blog social data, the user portrait method and the user generated by this paper His type of social data (such as Facebook data, WeChat data) is largely applicable. Although this paper focuses on the prediction and portrait of the user's credit attributes, the new method is also applicable to other types of personal tags such as age, sex, or marital status.
【學位授予單位】:中國科學技術大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TP311.13
【相似文獻】
相關期刊論文 前10條
1 靈子;信用消費悄然興起[J];信息經濟與技術;1994年12期
2 高靜霞,何英華;淺析信用及其對企業(yè)的影響[J];科技情報開發(fā)與經濟;2002年06期
3 肖勝;柯曉燕;徐靜;全波;馮炳麟;;開放信用消費 實現(xiàn)差異化服務[J];通信企業(yè)管理;2013年06期
4 韓偉;;小議信用檔案的建立[J];機電兵船檔案;2003年01期
5 ;信用你用了嗎?[J];數(shù)字生活;2001年03期
6 陳正月,張建忠;信用檔案悄然叩開百姓門[J];湖北檔案;2000年09期
7 任瓏;陳小筑;曹文煉;張子紅;;加速培育信用信息服務市場[J];中國信息界;2004年07期
8 ;新聞·時事追蹤[J];上海微型計算機;1999年42期
9 王雪玉;;銀行系電商崛起[J];金融科技時代;2014年06期
10 ;[J];;年期
相關重要報紙文章 前10條
1 大林;信用消費呼喚誠信[N];健康報;2006年
2 商務部市場秩序司司長 向欣;支持信用消費發(fā)展 推動消費模式轉變[N];國際商報;2009年
3 譚浩俊;信用消費基礎建設應提速[N];經濟參考報;2012年
4 孫韶華;促消費新政出臺 信用消費或受支持[N];中國貿易報;2012年
5 記者 孫韶華;信用消費有望獲政策“紅包”[N];經濟參考報;2012年
6 江德斌;鼓勵信用消費 “債務奴隸”會不會更多[N];中國商報;2012年
7 孫韶華;信用消費有望獲鼓勵[N];聯(lián)合日報;2012年
8 本報記者 吳力;不要對信用消費盲目叫好[N];國際商報;2013年
9 記者 張慧敏;“三零”信用消費模式促消費效果明顯[N];北京商報;2013年
10 胡慧平;“債百萬”敲響信用消費警鐘[N];大眾科技報;2003年
相關博士學位論文 前5條
1 郭光明;基于社交大數(shù)據的用戶信用畫像方法研究[D];中國科學技術大學;2017年
2 陳忠;信用消費論[D];中國社會科學院研究生院;2002年
3 葉建亮;交易擴展中的信用[D];浙江大學;2004年
4 葉建亮;交易擴展中的信用——一個制度與組織的視角[D];浙江大學;2004年
5 葉圣利;中國誠信經濟思想研究[D];復旦大學;2004年
相關碩士學位論文 前10條
1 黃羽茜;美國信用消費保護法律體系的歷史發(fā)展及其對我國的借鑒意義[D];中國政法大學;2007年
2 曲豪;我國信用消費的倫理研究[D];河北大學;2015年
3 許勇;基于流動性風險和信用風險的M商業(yè)銀行違約風險研究[D];南京理工大學;2015年
4 張萍;渭南市信用消費發(fā)展研究[D];西北農林科技大學;2015年
5 宋昊澤;信用評級變動與盈余管理的相關性研究[D];東北財經大學;2015年
6 高彩鳳;信用消費中消費者權益保護法律問題探討[D];江西財經大學;2015年
7 黃敏;蒙古族大學生信用消費問題研究[D];內蒙古師范大學;2016年
8 王漪鷗;個人信用消費貸款法律制度研究[D];首都經濟貿易大學;2011年
9 王國棟;我國信用消費倫理研究[D];山西財經大學;2012年
10 苗炎;信用的建立與維護——一個法律社會學的分析[D];吉林大學;2004年
,本文編號:2171683
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2171683.html