恒流負(fù)載驅(qū)動(dòng)電路失效抑制技術(shù)研究
本文選題:失效抑制技術(shù) + 遞進(jìn)觸發(fā)控制 ; 參考:《電子科技大學(xué)》2016年博士論文
【摘要】:本文針對(duì)恒流負(fù)載驅(qū)動(dòng)電路失效抑制技術(shù)開展研究,所謂“失效”包涵兩個(gè)方面:一是由于使用過程中損壞導(dǎo)致功能失效,二是由于驅(qū)動(dòng)電路性能指標(biāo)不足,導(dǎo)致無法滿足應(yīng)用要求。失效抑制技術(shù)則是在分析其失效產(chǎn)生原因的基礎(chǔ)上,提出新的方法和技術(shù),改善失效電路的性能,消除失效。發(fā)光二極管(Lighting Emitting Diode,LED)作為第三代固態(tài)光源,有著眾多的優(yōu)點(diǎn)和非常廣泛的應(yīng)用,在此作為典型恒流負(fù)載進(jìn)行研究。LED驅(qū)動(dòng)電路發(fā)展已經(jīng)較為成熟,但隨著LED本身的發(fā)展以及應(yīng)用范圍擴(kuò)大,或者原有的應(yīng)用市場(chǎng)的系統(tǒng)性能指標(biāo)提升,使得驅(qū)動(dòng)電路也一直在發(fā)展。國(guó)際上以TI和奧地利微電子等公司的產(chǎn)品為代表,如將LED電流調(diào)節(jié)精度和匹配度控制到1%以下,并具有良好的適用性。只有將驅(qū)動(dòng)電路的性能指標(biāo)和可靠性提高到國(guó)際一流產(chǎn)品相同,才能為其在高端市場(chǎng)的終端設(shè)備的應(yīng)用開拓道路,完成產(chǎn)品市場(chǎng)突圍。因此,本文的研究具有明顯的市場(chǎng)前景和重要的技術(shù)意義。本文通過分析功率MOSFET及其驅(qū)動(dòng)電路工作原理,進(jìn)行一個(gè)方法和兩項(xiàng)技術(shù)的創(chuàng)新研究:提出基于溝道寬度變化的di/dt遞進(jìn)觸發(fā)控制方法;根據(jù)同步功率管的工作時(shí)序,提出電壓自跟隨控制技術(shù);并基于電容電荷存儲(chǔ)功能,提出占空比跟隨的頻率轉(zhuǎn)換技術(shù)。其主要?jiǎng)?chuàng)新點(diǎn)如下:(1)通過分析功率MOSFET導(dǎo)通電流與其導(dǎo)通溝道寬度之間的關(guān)系,提出基于溝道寬度變化的di/dt遞進(jìn)觸發(fā)控制方法,建立MOSFET開啟與關(guān)斷工作狀態(tài)轉(zhuǎn)換時(shí)其di/dt與溝道時(shí)變函數(shù)W(t)之間的控制關(guān)系,完成遞進(jìn)觸發(fā)控制方法的理論分析。通過對(duì)W(t)函數(shù)的離散化處理,將此方法用于控制功率MOSFET的開關(guān)過程,實(shí)現(xiàn)功率MOSFET的溝道寬度遞進(jìn)調(diào)整,使其導(dǎo)通電流呈現(xiàn)遞進(jìn)式增加或者減少,達(dá)到功率MOSFET開啟與關(guān)斷瞬間di/dt降低的效果。通過流片測(cè)試結(jié)果證明,在相同測(cè)試條件,功率MOSFET關(guān)斷di/dt降低超過50%,開啟di/dt減小到原來的79%。(2)基于同步升壓轉(zhuǎn)換器功率轉(zhuǎn)換原理,分析了功率器件開關(guān)狀態(tài)轉(zhuǎn)換瞬間其工作狀態(tài)與各點(diǎn)電壓波形的關(guān)系,提出了一種電壓自跟隨控制技術(shù)。此技術(shù)通過檢測(cè)節(jié)點(diǎn)SW電壓判斷功率管工作狀態(tài),根據(jù)不同工作條件自動(dòng)控制同步功率管開啟時(shí)間,在確保無穿通風(fēng)險(xiǎn)條件下,極大的縮短了死區(qū)時(shí)間,有效的降低SW節(jié)點(diǎn)電壓過沖,提高其轉(zhuǎn)換效率。基于此技術(shù)的功率轉(zhuǎn)換控制電路應(yīng)用于同步升壓轉(zhuǎn)換器的設(shè)計(jì),其流片測(cè)試結(jié)果表明,死區(qū)時(shí)間內(nèi)的SW峰值電壓降低超過40%,輕載效率最大提高約3%。(3)基于常規(guī)占空比跟隨頻率轉(zhuǎn)換技術(shù)誤差產(chǎn)生原因的分析,提出電容電荷存儲(chǔ)頻率轉(zhuǎn)換技術(shù),此技術(shù)將單計(jì)數(shù)周期的時(shí)間誤差轉(zhuǎn)換為電荷存儲(chǔ)于電容,并疊加到下一計(jì)數(shù)周期,實(shí)現(xiàn)單周期計(jì)數(shù)時(shí)間誤差自動(dòng)消除,獲得更為精確的占空比跟隨指標(biāo)。將此技術(shù)應(yīng)用于LED驅(qū)動(dòng)的直接PWM調(diào)光控制電路,經(jīng)過流片測(cè)試驗(yàn)證,其輸入信號(hào)頻率在200Hz到10KHz范圍內(nèi),轉(zhuǎn)換后輸出信號(hào)頻率為1KHz,其占空比跟隨誤差小于1%。(4)通過對(duì)LED驅(qū)動(dòng)電路的電流調(diào)節(jié)誤差產(chǎn)生原因的分析,改進(jìn)電流調(diào)節(jié)技術(shù)。確定模擬調(diào)節(jié)的誤差由控制回路中運(yùn)算放大器的失調(diào)電壓而引起,通過分析模擬調(diào)節(jié)的原理,采用數(shù)字自校準(zhǔn)技術(shù)將模擬調(diào)光的最小調(diào)節(jié)范圍降低至1%的量產(chǎn)目標(biāo)。而直接PWM調(diào)光方面,則采用改進(jìn)的自動(dòng)調(diào)零技術(shù)與雙開關(guān)技術(shù)相結(jié)合架構(gòu),將其LED調(diào)光精度提高至1%以下,同時(shí)多通道電流輸出匹配度小于±0.6%,達(dá)到與國(guó)際一流產(chǎn)品的參數(shù)指標(biāo)。
[Abstract]:In this paper, the failure suppression technology of constant current load driving circuit is studied. The so-called "failure" includes two aspects: first, the failure of the use process leads to the failure of the function, and the two is due to the lack of performance indicators of the driving circuit, which can not meet the requirements of the application. New methods and techniques are proposed to improve the performance of the failure circuit and eliminate the failure. Lighting Emitting Diode (LED), as the third generation solid-state light source, has many advantages and very wide applications. As a typical constant current load, the development of.LED drive circuit is more mature, but with the development of LED itself As well as the expansion of the application scope and the improvement of the system performance index of the original application market, the drive circuit has been developing. The products of TI and Austria microelectronics are represented internationally, such as controlling the accuracy and matching degree of the LED current regulation to less than 1%, and having good applicability. As the standard and reliability are improved to the same international first-class products, it can open the road for the application of terminal equipment in the high-end market and complete the breakthrough of the product market. Therefore, the research of this paper has obvious market prospects and important technical significance. By analyzing the working principle of power MOSFET and its driving circuit, a method and two are carried out in this paper. Innovative research of item technology: a di/dt progressive trigger control method based on channel width change is proposed. Voltage self following control technology is proposed based on the working timing of synchronous power pipe. Based on the capacitance charge storage function, the frequency conversion technology of duty cycle following is proposed. The main innovation points are as follows: (1) through the analysis of power MOSFET conduction The relationship between the flow and the width of the channel channel is proposed. The di/dt progressive trigger control method based on the channel width change is proposed. The control relationship between the di/dt and the channel time-varying function W (T) is established when the MOSFET opening and the turn off working state is converted, and the theory analysis of the progressive trigger control method is completed. By discrete processing of the W (T) function, this method will be used. The method is used to control the switching process of the power MOSFET, realizing the progressive adjustment of the channel width of the power MOSFET, making the conduction current increasing or decreasing, reaching the effect of di/dt decreasing at the moment of power MOSFET opening and closing. The result of the flow sheet test proves that the power MOSFET turn off di/dt is reduced by more than 50% in the same test condition. The starting di/dt is reduced to the original 79%. (2) based on the principle of the power conversion of the synchronous boost converter. The relationship between the working state of the switch state and the voltage waveform of each point is analyzed. A voltage self following control technique is proposed. This technique is used to determine the working state of the power pipe by detecting the SW voltage of the node, according to the different working bars. The device automatically controls the opening time of the synchronous power pipe, greatly shortens the dead time, effectively reduces the SW node voltage overshoot and improves the conversion efficiency. The power conversion control circuit based on this technology is applied to the design of the synchronous boost converter. The flow sheet test results show that the SW peak in the dead time is found. The value voltage is reduced by more than 40% and the light load efficiency is increased by about 3%. (3). Based on the analysis of the cause of the conventional duty cycle frequency conversion error, the capacitance charge storage frequency conversion technology is proposed. This technique converts the time error of the single counting period to the charge stored in the electrical capacity and superposes the next counting period to realize the single cycle count. The time error is automatically eliminated and a more accurate duty ratio following index is obtained. This technology is applied to the direct PWM dimming control circuit driven by LED. The input signal frequency is within the range of 200Hz to 10KHz after the flow sheet test, and the frequency of the output signal is 1KHz after the conversion, and the duty cycle error is less than 1%. (4) through LED drive circuit. The analysis of the cause of current adjustment error and the improvement of the current adjustment technology. It is determined that the error of the analog adjustment is caused by the imbalance voltage of the operational amplifier in the control loop. By analyzing the principle of analog adjustment, the minimum adjustment range of the simulated dimming is reduced to 1% of the mass production target by the digital self calibration technique. By combining the improved automatic zero switching technology and the dual switch technology, the LED dimming precision is raised to less than 1%, and the matching degree of the multi channel current output is less than 0.6%, so as to reach the parameters of the international first-class products.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN386
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 裴雪軍,郭衛(wèi)農(nóng),康勇,陳堅(jiān);一種高性能的橋式驅(qū)動(dòng)電路[J];通信電源技術(shù);2001年01期
2 張建輝;大功率IGBT模塊驅(qū)動(dòng)電路的研制[J];揚(yáng)州職業(yè)大學(xué)學(xué)報(bào);2004年03期
3 林繼鋼;俞安琪;;LED驅(qū)動(dòng)電路簡(jiǎn)介[J];中國(guó)照明電器;2007年09期
4 宋堅(jiān)波;汪宋良;;一種大功率LED驅(qū)動(dòng)電路的設(shè)計(jì)與實(shí)現(xiàn)[J];機(jī)電信息;2012年18期
5 王棟;吳建興;;一種新型降壓模式LED驅(qū)動(dòng)電路系統(tǒng)[J];電子器件;2012年06期
6 石合地;曾以成;李祥;;電流自動(dòng)可調(diào)低功耗LED驅(qū)動(dòng)電路[J];電路與系統(tǒng)學(xué)報(bào);2013年01期
7 赤松昌彥 ,孫家榮;脈沖馬達(dá)的驅(qū)動(dòng)電路[J];國(guó)外自動(dòng)化;1985年02期
8 鄒邵華;;利用微計(jì)算機(jī)改進(jìn)高低壓驅(qū)動(dòng)電路[J];微計(jì)算機(jī)應(yīng)用;1988年06期
9 亓玉峰;霓虹燈驅(qū)動(dòng)電路[J];山東電子;1998年03期
10 徐延?xùn)|,張舟云,徐國(guó)卿;一種用于大功率IGBT模塊的驅(qū)動(dòng)電路[J];微特電機(jī);2004年08期
相關(guān)會(huì)議論文 前10條
1 葉關(guān)榮;;長(zhǎng)壽命LED驅(qū)動(dòng)電路[A];海峽兩岸第十屆照明科技與營(yíng)銷研討會(huì)專題報(bào)告文集[C];2003年
2 趙文智;戰(zhàn)雨利;于艷紅;;控制與驅(qū)動(dòng)電路的可靠性診斷[A];中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集[C];2002年
3 王敏;羅翱;羅萍;張波;;一種具有自舉功能的高速BiCMOS柵驅(qū)動(dòng)電路[A];第九屆全國(guó)電技術(shù)節(jié)能學(xué)術(shù)會(huì)議論文集[C];2007年
4 戎慧;陳鴻;;SLD光源驅(qū)動(dòng)電路的設(shè)計(jì)與實(shí)驗(yàn)結(jié)果[A];2007北京地區(qū)高校研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)會(huì)議論文集(上冊(cè))[C];2008年
5 宗耿;張曉兵;雷威;;30×30矩陣式FED的驅(qū)動(dòng)電路[A];第四屆華東真空科技學(xué)術(shù)交流展示會(huì)學(xué)術(shù)論文集[C];2003年
6 程瑤;袁祥輝;;熱釋電紅外焦平面陣列驅(qū)動(dòng)電路的設(shè)計(jì)[A];中國(guó)儀器儀表學(xué)會(huì)第六屆青年學(xué)術(shù)會(huì)議論文集[C];2004年
7 李益全;張繼華;楊傳仁;;一種小規(guī)模LCD驅(qū)動(dòng)電路IP核的設(shè)計(jì)[A];2005中國(guó)通信集成電路技術(shù)與應(yīng)用研討會(huì)論文集[C];2005年
8 潘金艷;朱長(zhǎng)純;;一種全印刷CNT-FED驅(qū)動(dòng)電路的研制[A];第九屆真空技術(shù)應(yīng)用學(xué)術(shù)年會(huì)論文集[C];2006年
9 彭吉龍;李保權(quán);劉杰;;太陽X射線望遠(yuǎn)鏡成像傳感器驅(qū)動(dòng)電路的設(shè)計(jì)實(shí)現(xiàn)[A];中國(guó)空間科學(xué)學(xué)會(huì)空間探測(cè)專業(yè)委員會(huì)第十七次學(xué)術(shù)會(huì)議論文集[C];2004年
10 胡社教;昂鑫;江萍;;基于CPLD的CIS驅(qū)動(dòng)電路的設(shè)計(jì)[A];2010中國(guó)儀器儀表與測(cè)控技術(shù)大會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 馮曉偉;LED驅(qū)動(dòng)電路:緊貼應(yīng)用 追求高效[N];中國(guó)電子報(bào);2008年
2 廣東 沈蘇民;電磁灶驅(qū)動(dòng)電路的檢修[N];電子報(bào);2006年
3 本版編輯邋馮曉偉 林昕 盧偉明 何俊德 William Su 李鴻昌;分食LCD驅(qū)動(dòng)“大餅” 中國(guó)企業(yè)應(yīng)繼續(xù)修煉內(nèi)功[N];中國(guó)電子報(bào);2008年
4 國(guó)家電光源質(zhì)量監(jiān)督檢驗(yàn)中心(上海) 國(guó)家燈具質(zhì)量監(jiān)督檢 驗(yàn)中心教授級(jí)高工 俞安琪;從產(chǎn)品特點(diǎn)出發(fā)研究應(yīng)用[N];消費(fèi)日?qǐng)?bào);2008年
5 天津 高兵 編譯;高效白光LED驅(qū)動(dòng)電路[N];電子報(bào);2014年
6 陜西 武威 編譯;LED燈串驅(qū)動(dòng)電路[N];電子報(bào);2014年
7 CCID微電子研究所;LCD驅(qū)動(dòng)電路市場(chǎng)前景廣闊[N];中國(guó)電子報(bào);2002年
8 北京 祝大衛(wèi);超高亮度LED燈驅(qū)動(dòng)電路[N];電子報(bào);2011年
9 浙江 子馨;LED 驅(qū)動(dòng)電路提功率因素200%[N];電子報(bào);2012年
10 四川 張達(dá)譯;高效率白色LED驅(qū)動(dòng)電路[N];電子報(bào);2003年
相關(guān)博士學(xué)位論文 前2條
1 賀江平;恒流負(fù)載驅(qū)動(dòng)電路失效抑制技術(shù)研究[D];電子科技大學(xué);2016年
2 姚茂群;BiCMOS電路驅(qū)動(dòng)結(jié)構(gòu)及設(shè)計(jì)研究[D];浙江大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 滕飛;大功率白光LED驅(qū)動(dòng)電路研究及系統(tǒng)設(shè)計(jì)[D];電子科技大學(xué);2014年
2 羅秀峰;非隔離降壓有源PFC LED驅(qū)動(dòng)電路研究[D];電子科技大學(xué);2015年
3 賀長(zhǎng)龍;大功率IGBT通用驅(qū)動(dòng)器設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2015年
4 邱小寧;LED照明驅(qū)動(dòng)電路在路燈控制系統(tǒng)中的應(yīng)用研究[D];東北石油大學(xué);2010年
5 徐強(qiáng);E類諧振逆變低頻超聲霧化噴頭驅(qū)動(dòng)電路研制[D];江蘇大學(xué);2016年
6 李寶;高效升壓型LED驅(qū)動(dòng)電路的研究[D];西南交通大學(xué);2016年
7 袁海波;一種用于硅基OLED微顯示的數(shù)字像素驅(qū)動(dòng)電路研究[D];吉林大學(xué);2016年
8 沈涵穎;高效高亮白光LED驅(qū)動(dòng)電路的設(shè)計(jì)[D];蘇州大學(xué);2011年
9 沈亞丹;汽車電子中的LED驅(qū)動(dòng)電路的研究設(shè)計(jì)[D];浙江大學(xué);2013年
10 張昌錢;一種高效大功率LED驅(qū)動(dòng)電路的設(shè)計(jì)[D];中南大學(xué);2013年
,本文編號(hào):2039918
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2039918.html