高效寬帶可調(diào)諧Si棱鏡陣列耦合THz波參量振蕩器研究
本文選題:MgO:LiNbO_3晶體 + THz波參量振蕩器; 參考:《哈爾濱工業(yè)大學(xué)》2017年博士論文
【摘要】:基于晶體參量效應(yīng)的THz波參量振蕩器(TPO)能夠在室溫條件下輸出高功率、寬帶連續(xù)可調(diào)諧的THz波,特別是采用Si棱鏡陣列耦合輸出的TPO(Si-TPO),具有結(jié)構(gòu)緊湊、輸出THz波指向性好的優(yōu)點(diǎn),在THz波譜技術(shù)中有重要的應(yīng)用價(jià)值。在過(guò)去近20年中,盡管THz波參量源得到不斷的發(fā)展,但仍然存在輸出效率低這一亟待解決的問(wèn)題。晶體對(duì)THz波在輸出過(guò)程中的強(qiáng)烈吸收,嚴(yán)重制約了THz波在高頻端的輸出能量和調(diào)諧范圍。此外,TPO的自動(dòng)控制快調(diào)諧技術(shù)是實(shí)現(xiàn)其THz波譜測(cè)量等應(yīng)用的必備條件。鑒于此,本論文主要研究Si-TPO降低晶體吸收損耗,提高THz波輸出效率的方法,并研究實(shí)現(xiàn)Si-TPO自動(dòng)調(diào)諧的關(guān)鍵技術(shù)。理論方面,根據(jù)電磁波與離子晶體TO振動(dòng)模相互作用的理論,分析了晶體的色散特性,并推導(dǎo)了受激電磁耦子散射(SPS)過(guò)程中Stokes光和THz波的增益表達(dá)式。根據(jù)Li Nb O3晶體的晶格參數(shù),計(jì)算了其在THz波段的色散、吸收以及SPS增益。以此為基礎(chǔ)推導(dǎo)了基于Li Nb O3晶體TPO的閾值表達(dá)式,研究了泵浦光斑尺寸、腔長(zhǎng)等參量對(duì)TPO閾值的影響,為后續(xù)實(shí)驗(yàn)工作提供了理論依據(jù)和數(shù)據(jù)參考。實(shí)驗(yàn)方面,建立了Si-TPO的實(shí)驗(yàn)裝置,通過(guò)參量產(chǎn)生實(shí)驗(yàn)分析了Mg O:Li Nb O3晶體的色散和Stokes增益特性。研究了Si-TPO輸出THz波的空間分布、晶體吸收、角度調(diào)諧、調(diào)諧輸出以及級(jí)聯(lián)過(guò)程等基本問(wèn)題。研究了泵浦光斑尺寸對(duì)Si-TPO輸出效率的影響,得出采用y方向尺寸為1mm左右泵浦光斑,Si-TPO具有更高的效率。研究了THz波在晶體內(nèi)的傳輸特性并得出Si-TPO中減小晶體吸收的原則,利用優(yōu)化光斑形狀、晶體安裝等方式實(shí)現(xiàn)THz波輸出效率的提升。采用切割泵浦光和Stokes光的方式研究得出,THz波在傳輸過(guò)程中會(huì)與晶體內(nèi)的泵浦光相互耦合,激發(fā)出新的THz波和Stokes光,強(qiáng)泵浦下的晶體能夠有效傳遞THz波能量。減小晶體吸收需靠近THz波輸出面附近的晶體內(nèi)有較強(qiáng)的泵浦光存在,并不需要Stokes光振蕩的發(fā)生。優(yōu)化泵浦光斑形狀,解決THz波耦合面積和調(diào)諧范圍的矛盾。優(yōu)化泵浦光斑,利用1mm狹縫選取大泵浦光斑的中間部分,將直徑為2mm的圓形光斑優(yōu)化為y方向尺寸為1mm的長(zhǎng)條形光斑,Si-TPO的低頻限從1.15THz延伸到0.58THz;相比于1mm直徑圓形光斑,1.2THz處的THz波輸出能量提高了2.5倍。優(yōu)化晶體安裝位置,使晶體特定位置位于旋轉(zhuǎn)軸,實(shí)現(xiàn)泵浦光的相對(duì)出射位置在角度調(diào)諧過(guò)程中不發(fā)生改變,避免了晶體損傷或額外晶體吸收損耗。在調(diào)諧過(guò)程中保持晶體的THz波輸出面與泵浦光平行,解決調(diào)諧過(guò)程中由于晶體傾斜而帶來(lái)額外的晶體吸收損耗,實(shí)現(xiàn)1.6THz附近的輸出能量提高了約3.2倍。構(gòu)建了泵浦光在THz波輸出面全反射的Si-TPO(PR-Si-TPO),實(shí)現(xiàn)了THz波輸出能量數(shù)十倍的提升,并擴(kuò)展了THz波的高頻調(diào)諧范圍。根據(jù)全反射衰逝波理論,提出通過(guò)在晶體和棱鏡間制造特定厚度空氣隙的方法,實(shí)現(xiàn)界面對(duì)入射泵浦光的全反射,同時(shí)保證THz波高效耦合輸出,采用0.8μm厚的空氣隙,構(gòu)建了泵浦光在THz波輸出面全反射的Si-TPO。與同等泵浦條件下傳統(tǒng)的Si-TPO相比,PR-Si-TPO輸出THz波的能量在1.8-2.3THz范圍內(nèi)提高了約20-50倍,振蕩閾值降低10%-34%,調(diào)諧范圍的高頻限從2.5THz擴(kuò)展到3.66THz,Stokes光線寬壓縮了近70%,從0.23nm壓縮至0.07nm。利用端面精密拋光的晶體,采用光斑直徑為1mm、重頻為2Hz、能量為8m J的泵浦光時(shí),晶體切角沒(méi)有出現(xiàn)損傷,實(shí)現(xiàn)PR-Si-TPO的低頻限擴(kuò)展至與Si-TPO的相當(dāng)。實(shí)驗(yàn)獲得THz波的調(diào)諧輸出范圍為0.6-3.6THz,當(dāng)泵浦光能量為15m J時(shí),在2.0THz附近獲得了最高THz波輸出能量為2.4μJ,峰值功率為0.3kW,能量轉(zhuǎn)化效率達(dá)到1.6×10-4。研究了通過(guò)調(diào)節(jié)一個(gè)反射鏡角度即可實(shí)現(xiàn)Si-TPO角度調(diào)諧的方式,為實(shí)現(xiàn)Si-TPO自動(dòng)控制快調(diào)諧突破技術(shù)關(guān)鍵。采用反射鏡配合1:1望遠(yuǎn)鏡系統(tǒng)的方式,在PR-Si-TPO中實(shí)現(xiàn)了反射鏡角度調(diào)諧,并驗(yàn)證了此方式能夠維持PR-Si-TPO的效率;赑orro棱鏡作為角反射器,采用非對(duì)稱的腔型,實(shí)現(xiàn)了雙程泵浦的輸出鏡調(diào)諧Si-TPO。在0.8-2THz內(nèi)獲得了THz波調(diào)諧輸出,實(shí)驗(yàn)測(cè)得其閾值比傳統(tǒng)的平-平腔Si-TPO降低23%左右。將輸出鏡換成與角反射器相交叉的另一個(gè)porro棱鏡,構(gòu)成交叉porro棱鏡腔,實(shí)現(xiàn)了對(duì)腔鏡失諧不敏感的Si-TPO。通過(guò)對(duì)比研究表明,其承受腔鏡失諧的能力比傳統(tǒng)平-平腔Si-TPO提高1-2個(gè)數(shù)量級(jí),極大增強(qiáng)TPO對(duì)工作環(huán)境的適應(yīng)性。
[Abstract]:The THz wave parametric oscillator (TPO) based on the crystal parameter effect can output high power, broadband and continuous tunable THz wave at room temperature, especially TPO (Si-TPO) using Si prism array coupling output. It has the advantages of compact structure and good directivity of output THz wave. It has important application value in THz wave spectrum technology. In the past 20 years In spite of the continuous development of the THz wave parameter source, there is still an urgent problem to be solved. The strong absorption of the crystal to the THz wave in the output process seriously restricts the output energy and tuning range of the THz wave at the high frequency end. In addition, the TPO automatic control fast harmonic technique is a necessity to realize the application of the THz spectrum measurement. In view of this, this paper mainly studies the method that Si-TPO reduces the absorption loss of crystal and improves the output efficiency of THz wave, and studies the key technology to realize the automatic tuning of Si-TPO. In theory, the dispersion characteristics of the crystal body are analyzed based on the theory of the interaction between the electromagnetic wave and the vibrational mode of the ionic crystal TO, and the scattering of stimulated electromagnetic coupling is derived. SPS) the expression of the gain of Stokes and THz waves in the process. According to the lattice parameters of Li Nb O3 crystal, the dispersion, absorption and SPS gain in the THz band are calculated. Based on this, the threshold expression of Li Nb O3 crystal TPO is derived, and the effect of the size of the pump spot and the length of the cavity on the threshold value is studied. For the theoretical basis and data reference. In the experiment, the experimental device of Si-TPO was set up. The dispersion and Stokes gain characteristics of the Mg O:Li Nb O3 crystal were analyzed by the parameter generation experiment. The basic problems such as the spatial distribution of the THz wave of the Si-TPO output, the crystal absorption, the angle tuning, the tuning output and the cascade process were studied. The pump spot was studied. The effect of size on the output efficiency of Si-TPO shows that the pump light spot in the Y direction is about 1mm, and the Si-TPO has higher efficiency. The principle of THz wave transmission in the crystal is studied and the principle of reducing the crystal absorption in Si-TPO is obtained. The output efficiency of THz wave is improved by optimizing the shape of the spot and crystal installation and so on. The cutting pump is used. The study of the mode of pup and Stokes light shows that the THz wave will be coupled with the pump light in the crystal during the transmission process, which can stimulate the new THz wave and Stokes light. The crystal under the strong pump can effectively transfer the THz wave energy. It is not necessary for the crystal absorption to exist in the crystal near the THz wave output surface, and does not require Stokes light. It optimizes the shape of the pump spot, solves the contradiction between the THz wave coupling area and the tuning range, optimizes the pump spot, uses the 1mm slit to select the middle part of the large pump spot, and optimizes the circular spot of the diameter of 2mm into a long strip of light with the dimension of the Y direction 1mm, and the low frequency limit of Si-TPO extends from 1.15THz to 0.58THz; compared with 1mm straight. The output energy of THz wave at 1.2THz is increased by 2.5 times. The position of crystal installation is optimized and the specific position of the crystal is located on the axis of rotation. The relative ejection position of the pump does not change during the angle tuning process, avoiding the crystal damage or the additional crystal absorption loss. In the tuning process, the THz wave output surface of the crystal is maintained. With Ura Hikaruhiroyuki, the extra crystal absorption loss caused by the crystal tilt in the tuning process was solved, and the output energy near the 1.6THz was raised about 3.2 times. The Si-TPO (PR-Si-TPO) of the full reflection of the pump light in the THz wave output surface was constructed. The output energy of the THz wave was raised by ten times, and the high frequency tuning range of the THz wave was extended. According to the theory of total reflection and evanescent wave, a method of producing a specific thickness air gap between the crystal and prism is proposed to realize the full reflection of the interface to the incident pump light. At the same time, the efficient coupling output of the THz wave is guaranteed, and the 0.8 m thick air gap is used to construct the traditional Si under the full reflection of the Si-TPO. and the same pump condition of the pump light in the output surface of the THz wave. Compared with -TPO, the energy of the PR-Si-TPO output THz wave increased by about 20-50 times in the 1.8-2.3THz range, the oscillation threshold decreased by 10%-34%, the high frequency limit of the tuning range was expanded from 2.5THz to 3.66THz, and the width of the Stokes light was compressed by nearly 70%. When the pump light of J has no damage, the low frequency limit of the PR-Si-TPO is extended to the same as that of the Si-TPO. The tuning output range of the THz wave is 0.6-3.6THz. When the pump light energy is 15m J, the maximum THz wave output energy is 2.4 mu J, the peak power is 0.3kW, and the energy conversion efficiency reaches 1.6 * 10-4. The mode of Si-TPO angle tuning can be realized by adjusting the angle of a reflector. In order to realize the key technology of fast tuning breakthroughs in Si-TPO automatic control, the reflector angle tuning is realized in PR-Si-TPO with the mirror with the 1:1 telescope system, and the efficiency of maintaining PR-Si-TPO is verified. Based on the Porro prism. As a corner reflector, the mirror is used as an asymmetrical cavity type, realizing the tuning output of the output mirror of the double pumped output mirror Si-TPO. in 0.8-2THz. The experiment results show that the threshold is about 23% lower than that of the traditional flat cavity Si-TPO. The output mirror is replaced by another Porro prism which crosses the corner reflector, and the cross Porro prism cavity is formed. The Si-TPO., which is insensitive to the detuning of the mirror, shows that the ability to withstand the detuning of the mirror is 1-2 orders of magnitude higher than that of the conventional flat flat cavity Si-TPO, which greatly enhances the adaptability of the TPO to the working environment.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN753.91
【相似文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 李修;陳秀艷;;不同泵浦參數(shù)對(duì)泵浦光強(qiáng)分布影響的模擬分析[J];北京印刷學(xué)院學(xué)報(bào);2011年02期
2 陳文駒,林美蓉;泵浦/探測(cè)增益光譜學(xué)[J];量子電子學(xué);1986年04期
3 邱文法;陶瓷泵浦腔的實(shí)驗(yàn)研究[J];激光雜志;1994年04期
4 阮NB;寧提綱;裴麗;胡旭東;;高功率雙包層光纖激光器的泵浦技術(shù)[J];光纖與電纜及其應(yīng)用技術(shù);2009年01期
5 商繼敏;陳鵬;王石語(yǔ);;泵浦光對(duì)固體激光器光束質(zhì)量的影響[J];應(yīng)用激光;2012年03期
6 張華,徐世祥,范滇元;用蒙特卡羅方法計(jì)算棒狀放大器內(nèi)的泵浦能量分布[J];光學(xué)學(xué)報(bào);1997年12期
7 付成鵬;;遠(yuǎn)程泵浦系統(tǒng)中增益單元放置位置的優(yōu)化配置的研究[J];烽火科技;2011年09期
8 藍(lán)可,張毓泉,,于敏;共振光泵浦X光激光機(jī)制的研究[J];強(qiáng)激光與粒子束;1994年03期
9 馮國(guó)英,呂百達(dá);單段與多段陣列式放大器泵浦腔的比較研究[J];強(qiáng)激光與粒子束;1998年04期
10 張利平;段志春;陳建國(guó);周鼎富;楊澤厚;;雙包層光纖激光器泵浦閾值的解析表達(dá)式[J];光電工程;2006年11期
中國(guó)重要會(huì)議論文全文數(shù)據(jù)庫(kù) 前10條
1 朱曉寧;鄭磊;李巨浩;丁偉;張利劍;陳章淵;;引入二階泵浦后不同泵浦方式拉曼放大器性能比較[A];全國(guó)第十一次光纖通信暨第十二屆集成光學(xué)學(xué)術(shù)會(huì)議(OFCIO’2003)論文集[C];2003年
2 朱志武;馮瑩;魏立安;官慶;姜廣文;;多點(diǎn)泵浦雙包層光纖激光器理論以及數(shù)值分析[A];光電技術(shù)與系統(tǒng)文選——中國(guó)光學(xué)學(xué)會(huì)光電技術(shù)專業(yè)委員會(huì)成立二十周年暨第十一屆全國(guó)光電技術(shù)與系統(tǒng)學(xué)術(shù)會(huì)議論文集[C];2005年
3 郎利影;邢岐榮;李術(shù)新;徐世祥;王鍇;柴路;王清月;;雙光子吸收及泵浦光斑對(duì)太赫茲輻射的影響[A];光電技術(shù)與系統(tǒng)文選——中國(guó)光學(xué)學(xué)會(huì)光電技術(shù)專業(yè)委員會(huì)成立二十周年暨第十一屆全國(guó)光電技術(shù)與系統(tǒng)學(xué)術(shù)會(huì)議論文集[C];2005年
4 任潔;劉輝;王葉兵;盧本全;謝玉林;常宏;;堿土金屬中重泵浦光對(duì)單態(tài)能級(jí)冷卻影響的理論及實(shí)驗(yàn)研究[A];第十六屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2014年
5 周俊鶴;陳建平;;一種計(jì)算拉曼放大器后向泵浦的新算法[A];2003'全國(guó)微波毫米波會(huì)議論文集[C];2003年
6 張遠(yuǎn)憲;馮黎;劉春;普小云;;消逝波泵浦的回音壁模式激光增益計(jì)算[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
7 趙保真;梁曉燕;冷雨欣;王乘;姜永亮;李儒新;徐至展;;利用不同的泵浦波長(zhǎng)優(yōu)化啁啾脈沖參量放大[A];上海市激光學(xué)會(huì)2005年學(xué)術(shù)年會(huì)論文集[C];2005年
8 褚政;劉勁松;;強(qiáng)太赫茲場(chǎng)下光生載流子量子產(chǎn)生效率與泵浦光強(qiáng)度關(guān)系研究[A];第十三屆全國(guó)紅外加熱暨紅外醫(yī)學(xué)發(fā)展研討會(huì)論文及論文摘要集[C];2011年
9 蔣建鋒;涂波;周唐建;崔玲玲;姚震宇;唐淳;;高平均功率薄片激光多通泵浦耦合系統(tǒng)設(shè)計(jì)[A];中國(guó)工程物理研究院科技年報(bào)(2005)[C];2005年
10 武志超;凌銘;譚雪春;金光勇;寧國(guó)斌;梁柱;;高重頻三向側(cè)面泵浦DPL耦合系統(tǒng)設(shè)計(jì)[A];2007年先進(jìn)激光技術(shù)發(fā)展與應(yīng)用研討會(huì)論文集[C];2007年
中國(guó)重要報(bào)紙全文數(shù)據(jù)庫(kù) 前4條
1 實(shí)習(xí)生 姜靖;提速:從30分鐘到3秒鐘[N];科技日?qǐng)?bào);2007年
2 周壽桓;明確應(yīng)用 解決固體激光技術(shù)難題[N];中國(guó)電子報(bào);2007年
3 本報(bào)記者 倪洪章;銀行數(shù)據(jù)大集中 SI們面臨洗牌[N];計(jì)算機(jī)世界;2006年
4 謝濤;浙江鴻程:電信行業(yè)SI的老兵新傳[N];電腦商報(bào);2006年
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 張瑞亮;高效寬帶可調(diào)諧Si棱鏡陣列耦合THz波參量振蕩器研究[D];哈爾濱工業(yè)大學(xué);2017年
2 朱學(xué)華;大口徑非聚焦泵浦的受激布里淵散射閾值及脈沖壓縮研究[D];哈爾濱工業(yè)大學(xué);2015年
3 譚祺瑞;大模場(chǎng)雙包層光纖側(cè)面泵浦耦合關(guān)鍵技術(shù)研究[D];北京工業(yè)大學(xué);2016年
4 王子健;1064nm主振蕩功率放大泵浦PPMgLN中紅外光學(xué)參量振蕩器研究[D];長(zhǎng)春理工大學(xué);2016年
5 黃值河;分布式側(cè)面耦合包層泵浦光纖激光器研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2015年
6 林林;二極管泵浦固體激光器中泵浦效果的分析與評(píng)價(jià)[D];西安電子科技大學(xué);2012年
7 趙鴻;二極管側(cè)面泵浦倍頻固體激光技術(shù)研究[D];中國(guó)科學(xué)院西安光學(xué)精密機(jī)械研究所;2001年
8 李忠洋;基于非線性光學(xué)方法產(chǎn)生高功率THz波輻射源的研究[D];天津大學(xué);2011年
9 盛泉;共振泵浦在摻Nd~(3+)全固態(tài)激光器及非線性光學(xué)頻率變換技術(shù)中的應(yīng)用[D];天津大學(xué);2013年
10 高松;角泵浦Nd:YAG復(fù)合板條基模激光器及其光束對(duì)稱性研究[D];清華大學(xué);2010年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 王艷雪;強(qiáng)激光長(zhǎng)程傳輸過(guò)程中受激轉(zhuǎn)動(dòng)拉曼散射近場(chǎng)特性的研究[D];哈爾濱工業(yè)大學(xué);2015年
2 徐賽;LD泵浦3微米Er固體激光器輸出特性研究[D];哈爾濱工業(yè)大學(xué);2015年
3 錢傳鵬;8微米ZGP級(jí)聯(lián)OPA實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2015年
4 陳辰;基于腔內(nèi)泵浦全固態(tài)三波長(zhǎng)激光器的研究[D];長(zhǎng)春理工大學(xué);2015年
5 王妍;基于腔內(nèi)泵浦技術(shù)的雙波長(zhǎng)和頻482.5nm藍(lán)光連續(xù)激光器的研究[D];長(zhǎng)春理工大學(xué);2015年
6 韓鎏;1.94微米泵浦Ho:YVO_4晶體調(diào)Q激光特性研究[D];哈爾濱工業(yè)大學(xué);2015年
7 李昊洋;腔內(nèi)泵浦雙波長(zhǎng)激光器的諧振腔設(shè)計(jì)[D];長(zhǎng)春理工大學(xué);2014年
8 王寧;基于摻釹納米顆粒流體激光器的理論分析及性能研究[D];南京郵電大學(xué);2015年
9 黃雪松;LD泵浦Nd:YAG/Cr~(4+):YAG被動(dòng)調(diào)Q微型激光器研究[D];北京工業(yè)大學(xué);2016年
10 韓金j;脈沖LD側(cè)面泵浦棒狀Nd:YAG激光器的時(shí)變熱效應(yīng)研究[D];長(zhǎng)春理工大學(xué);2016年
本文編號(hào):2015081
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2015081.html