利用高K絕緣介質(zhì)的新型功率半導體器件的研究
本文選題:功率半導體器件 + 超結 ; 參考:《電子科技大學》2016年博士論文
【摘要】:隨著經(jīng)濟的發(fā)展,全球?qū)﹄娔艿男枨罅吭谥鹉暝黾。如?中國已超越美國成為了世界上電能消耗量最大的國家,而且中國的電能消耗量的增長率也遠超美國和歐盟。這樣的發(fā)展趨勢顯然是我國實現(xiàn)節(jié)能減排目標的一個重大挑戰(zhàn)。面對這一挑戰(zhàn),高效地利用電能顯得尤為重要。電力電子技術是一種能將電能高效利用的新興技術,而功率半導體器件是電力電子技術的核心。因此,研究功率半導體器件對我國實現(xiàn)節(jié)能減排有重要意義。電子科技大學陳星弼教授提出的超結(Superjunction,SJ)耐壓層是功率半導體器件領域的重要發(fā)明。SJ耐壓層可以獲得遠比傳統(tǒng)耐壓層更優(yōu)異的比導通電阻(Ron)與擊穿電壓(VB)的關系,因而被譽為功率半導體器件的里程碑。然而,SJ耐壓層也有一些缺點,比如VB容易受電荷非平衡條件的影響等。為此,陳星弼教授又提出了高K耐壓層。高K耐壓層不僅改善了SJ耐壓層的一些缺點,而且可以獲得與SJ耐壓層相近的Ron與VB的關系。作者在陳星弼教授的指導下主要開展了應用高K耐壓層的縱向雙擴散金屬-氧化物-半導體場效應晶體管(VDMOS)和肖特基二極管(SBD)的研究。本文中主要的創(chuàng)新工作有:1.為了深入理解高K耐壓層的原理及特點,給出了高K耐壓層的解析模型,解釋了高K耐壓層的基本原理,并給出了高K耐壓層的最優(yōu)化設計方法以及最優(yōu)化的Ron與VB的關系。仿真結果顯示,在相同VB下,與應用了SJ耐壓層的VDMOS(SJ-MOSFET)相比,應用了高K耐壓層的VDMOS(Hk-MOSFET)的Ron會稍大一點,開關時間會更長一些,但在大電流下的耐壓會明顯更高。此外,還提出了適用于Hk-MOSFET的叉指條形元胞和兩種六角形元胞的統(tǒng)一的簡化設計方法,并比較了這些元胞結構的Ron。理論和仿真計算均發(fā)現(xiàn),若要獲得最小的Ron,就需要根據(jù)設計條件來選取合適的元胞結構。2.研究了一種改進的Hk-MOSFET,給出了適用于改進的Hk-MOSFET的解析模型以及最優(yōu)化設計的方法,并與以前的Hk-MOSFET以及SJ-MOSFET作了對比。理論和仿真計算結果均顯示,在相同VB下,改進的Hk-MOSFET的Ron比以前的Hk-MOSFET的Ron低30%~50%。一個VB=600 V的例子的仿真結果顯示,改進的Hk-MOSFET的功率優(yōu)值(Figure of Merit,FOM=VB2/Ron)達到了31.8 MW/cm2,它比以前的Hk-MOSFET的FOM高73%,也比SJ-MOSFET的FOM高57%。另外,與SJ-MOSFET相比,這兩種Hk-MOSFET的VB受工藝誤差的影響也都明顯更小。3.研究了一種利用高K絕緣介質(zhì)的SJ耐壓層(Hk-SJ耐壓層),提出了一個解析模型用于優(yōu)化設計該結構,并將應用了Hk-SJ耐壓層的VDMOS(Hk-SJ-MOSFET)與傳統(tǒng)SJ-MOSFET作了對比。解析模型中的VB的目標設計值與仿真結果很接近,兩者之間誤差僅為-5%到+8%。此外,在高K絕緣介質(zhì)的介電系數(shù)?I=20~300?0下,Hk-SJ-MOSFET的最優(yōu)化的Ron幾乎不變。在相同的VB和元胞尺寸下,Hk-SJ-MOSFET的Ron比傳統(tǒng)SJ-MOSFET的Ron低約8%~20%。VB=400 V和VB=800 V的兩個例子的仿真結果均顯示,當?I達到60?0時,Hk-SJ-MOSFET中p區(qū)的摻雜濃度誤差對VB的影響可以比傳統(tǒng)SJ-MOSFET中p區(qū)的摻雜濃度誤差對VB的影響小2倍。4.研究了幾種應用了高K耐壓層的SBD(Hk-SBD),并將它們與應用了SJ耐壓層的SBD(SJ-SBD)作了對比。仿真結果顯示,Hk-SBD的Ron和VB的值與SJ-SBD的Ron和VB的值相接近,而且Hk-SBD的反向恢復特性比SJ-SBD的反向恢復特性更軟。為了降低Hk-SBD的反向漏電流并且不增加Ron,還提出了一種Hk-SBD的新結構,即帶有n+-poly的Hk-SBD。該結構中引入的n+-poly區(qū)不僅在在反向承受高壓時可以降低肖特基結上的電場,而且在正向?qū)〞r在n區(qū)頂部區(qū)域與高K絕緣體區(qū)界面上可以形成一個高濃度的電子積累層。一個VB=400 V的例子的仿真結果顯示,與以前的Hk-SBD相比,帶有n+-poly的Hk-SBD在350 V反向偏壓下的漏電流降低了約40倍,而比導通電阻(等于3.13 mΩ?cm2)幾乎不變。
[Abstract]:With the development of the economy, the demand for electric energy is increasing year by year. Now, China has surpassed the United States and became the largest country in the world, and the growth rate of electricity consumption is far beyond the United States and the European Union. This trend is obviously a major challenge for our country to realize the goal of energy saving and emission reduction. It is very important to make use of electric energy efficiently. Power electronics is a new technology which can make use of electric energy efficiently. Power semiconductor devices are the core of power electronics. Therefore, it is important to study power semiconductor devices for energy saving and emission reduction in China. Professor Chen Xingbi of the University of electronic science and technology Superjunction (SJ) pressure resistant layer is an important invention in the field of power semiconductor devices. The.SJ pressure resistance layer can obtain much better relationship between the specific resistance (Ron) and the breakdown voltage (VB), which is far superior to the traditional pressure layer. Therefore, it is known as the milestone of the power semiconductor device. However, the SJ resistance layer also has some disadvantages, such as the VB is easily affected by the charge imbalance. To this end, Professor Chen Xingbi also proposed a high K pressure layer. The high K pressure layer not only improved some shortcomings of the SJ pressure resistance layer, but also obtained the relationship between the Ron and the VB, which was similar to the SJ pressure resistance layer. Under the guidance of Professor Chen Xingbi, the longitudinal double diffusion metal oxide semiconductor field with high K pressure resistance layer was mainly carried out. The study of effect transistors (VDMOS) and Schottky diode (SBD). The main innovations in this paper are as follows: 1. in order to understand the principle and characteristics of high K pressure resistance layer, the analytical model of high K pressure resistance layer is given, the basic principle of high K pressure layer is explained, and the optimal design method of high K pressure resistant layer and the optimal Ron and VB are given. The simulation results show that, under the same VB, the Ron of the VDMOS (Hk-MOSFET) with the high K pressure layer is slightly larger than the VDMOS (SJ-MOSFET) with the application of the SJ pressure layer, and the switching time will be longer, but the pressure in the high current will be significantly higher. Furthermore, the interdigital cell and two kinds of six angles for Hk-MOSFET are also proposed. The unified simplified design method of cell cells, and comparing the Ron. theory and simulation calculation of these cellular structures, it is found that if we want to get the smallest Ron, we need to select the appropriate cellular structure.2. according to the design conditions and study an improved Hk-MOSFET, and give the analytical model and optimal design for the improved Hk-MOSFET. The method is compared with the previous Hk-MOSFET and SJ-MOSFET. Both theoretical and simulation results show that, under the same VB, the simulation results of the improved Hk-MOSFET Ron as compared to the previous Hk-MOSFET Ron low 30%~50%. one VB=600 V show that the improved Hk-MOSFET work rate is 31.8 /cm2, which is 73% higher than the FOM of previous Hk-MOSFET, and 57%. higher than SJ-MOSFET's FOM. Compared with SJ-MOSFET, the VB of the two Hk-MOSFET is significantly smaller than that of the process error..3. studies a SJ withstand layer using a highly K insulating medium. An analytical model is proposed for the optimization of the structure and will be applied. The VDMOS (Hk-SJ-MOSFET) of the Hk-SJ pressure layer is compared with the traditional SJ-MOSFET. The target design value of the VB in the analytical model is close to the simulation result, and the error between the two is only -5% to +8%.. Under the dielectric coefficient of the high K dielectric, I=20~300? 0, the optimal Ron of Hk-SJ-MOSFET is almost invariable. Under the same VB and cell size, The simulation results of two examples of Hk-SJ-MOSFET's Ron compared to the traditional SJ-MOSFET Ron low 8%~20%.VB=400 V and VB=800 V show that when the I reaches 60? 0, the doping concentration error in p zone in Hk-SJ-MOSFET is 2 times smaller than the influence of the doping concentration error in the traditional region. The SBD (Hk-SBD) of the layer is compared with the SBD (SJ-SBD) applied to the SJ pressure layer (SJ-SBD). The simulation results show that the values of the Ron and VB of the Hk-SBD are close to the Ron and VB values of SJ-SBD, and the reverse recovery characteristic of the Hk-SBD is more soft than the reverse recovery characteristic. The new structure of Hk-SBD, that is, the n+-poly Zone introduced in the Hk-SBD. with the n+-poly, can not only reduce the electric field on the Schottky junction in the reverse high pressure, but also form a high concentration of electron accumulation layer at the top of the N region and the high K insulator interface in the forward conduction. A simulation of an example of VB=400 V. The results show that the leakage current of the Hk-SBD with n+-poly in the 350 V reverse bias is approximately 40 times lower than that of the previous Hk-SBD, while the specific resistance (equal to 3.13 m Omega cm2) is almost invariable.
【學位授予單位】:電子科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TN386;TN311.7
【相似文獻】
相關期刊論文 前10條
1 B.J.巴利加;韓鄭生;陸江;宋李梅;孫寶剛;;功率半導體器件基礎[J];電力電子;2013年03期
2 符志欽,EricI.Carroll(瑞士);用于大功率領域的功率半導體器件[J];國外內(nèi)燃機車;2000年02期
3 張為佐;;功率半導體器件鳥瞰[J];電源技術應用;2001年12期
4 本刊評論員;;“功率半導體器件”專集導讀[J];電力電子;2003年Z1期
5 羽冬;;側(cè)向功率半導體器件[J];半導體信息;2005年01期
6 龍樂;;面向汽車應用的功率半導體器件與封裝[J];電子與封裝;2009年12期
7 孫偉鋒;張波;肖勝安;蘇巍;成建兵;;功率半導體器件與功率集成技術的發(fā)展現(xiàn)狀及展望[J];中國科學:信息科學;2012年12期
8 劉沖;徐迎春;于利紅;曹玉峰;李奇;;功率半導體器件直流參數(shù)測試系統(tǒng)的研發(fā)[J];今日電子;2013年11期
9 Philip L.Hower ,李志晨;功率半導體器件綜述[J];微電子學;1989年04期
10 張為佐;功率半導體器件的新發(fā)展[J];電子產(chǎn)品世界;1998年Z1期
相關會議論文 前4條
1 張為佐;;功率半導體器件的新發(fā)展[A];中國電工技術學會電力電子學會五屆三次理事會議暨學術報告會論文集[C];2001年
2 段寶興;張波;李肇基;;功率半導體器件發(fā)展概述[A];2006中國電工技術學會電力電子學會第十屆學術年會論文摘要集[C];2006年
3 張波;;功率半導體器件技術[A];中國真空學會2012學術年會論文摘要集[C];2012年
4 張發(fā)生;何多昌;;用ANSYS軟件包模擬功率半導體器件用散熱器穩(wěn)態(tài)熱阻[A];中國電工技術學會電力電子學會第八屆學術年會論文集[C];2002年
相關重要報紙文章 前10條
1 記者 朱宇邋通訊員 李湘虹;甬企收購“金鵬”功率半導體器件業(yè)務[N];寧波日報;2007年
2 饒祖剛;性能差異化 功率器件制造面臨多重挑戰(zhàn)[N];中國電子報;2008年
3 記者 楊君;國家發(fā)改委重點支持我市項目順利通過驗收[N];東營日報;2011年
4 本報記者 陸婭楠;國內(nèi)最大規(guī)模IGBT產(chǎn)業(yè)基地開建[N];人民日報;2011年
5 張浩明 孔超;功率半導體器件迎來發(fā)展契機[N];國際商報;2012年
6 記者 周雪松;中國大功率半導體產(chǎn)業(yè)基地投產(chǎn)[N];中國經(jīng)濟時報;2009年
7 文泰;華微電子 定增募資6.69億投兩項目[N];證券時報;2011年
8 記者 何旭 通訊員 張勇;中國北車率先實現(xiàn)6500伏以上IGBT產(chǎn)品封裝[N];人民鐵道;2012年
9 記者 覃秘;華微電子擬定增募資6.7億擴產(chǎn)[N];上海證券報;2011年
10 本報記者 馬越;華微電子 六英寸線投產(chǎn)試運行[N];中國證券報;2008年
相關博士學位論文 前3條
1 呂信江;新型功率半導體器件的研究及其終端耐壓層的利用[D];電子科技大學;2014年
2 黃銘敏;利用高K絕緣介質(zhì)的新型功率半導體器件的研究[D];電子科技大學;2016年
3 程駿驥;智能功率集成電路中功率半導體器件的研究[D];電子科技大學;2013年
相關碩士學位論文 前3條
1 張寧;寬禁帶功率半導體器件損耗研究[D];浙江大學;2016年
2 陳校蕓;功率半導體器件失效模型多物理場仿真分析[D];華北電力大學;2015年
3 程士東;高壓大電流碳化硅MOSFET串并聯(lián)模塊[D];浙江大學;2014年
,本文編號:2009350
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2009350.html