基于流體動(dòng)力學(xué)模型的無線傳感器網(wǎng)絡(luò)部署技術(shù)研究
本文選題:節(jié)點(diǎn)部署 + 無線傳感器網(wǎng)絡(luò); 參考:《南京理工大學(xué)》2016年博士論文
【摘要】:節(jié)點(diǎn)部署技術(shù)是無線傳感器網(wǎng)絡(luò)研究中的熱點(diǎn)之一。優(yōu)化的節(jié)點(diǎn)部署策略,可以較大程度地增強(qiáng)網(wǎng)絡(luò)中節(jié)點(diǎn)的容錯(cuò)能力和負(fù)載均衡,亦可較好地提升網(wǎng)絡(luò)的性能、延長網(wǎng)絡(luò)的生命周期,降低網(wǎng)絡(luò)的部署代價(jià)。網(wǎng)絡(luò)的節(jié)點(diǎn)部署問題是無線傳感器網(wǎng)絡(luò)研究中的一個(gè)難題,尤其在復(fù)雜的部署環(huán)境中顯得尤為突出。本文應(yīng)用流體動(dòng)力學(xué)模型對無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)部署技術(shù)進(jìn)行了研究。首先采用基于位置信息的理想流體模型對節(jié)點(diǎn)部署進(jìn)行了研究,為彌補(bǔ)理想流體模型連通性不好的問題,又采用了非守恒粘性流體模型對三維網(wǎng)絡(luò)的節(jié)點(diǎn)部署進(jìn)行了研究。相比于理想流體模型,部署效果得到了提高。然而,無論是理想流體模型還是粘性流體模型,其本質(zhì)上都是一種集中式部署策略,這對于網(wǎng)絡(luò)負(fù)載均衡及延長網(wǎng)絡(luò)生存期是不利的。本文最后提出了基于改進(jìn)人工魚群的流體模型分布式節(jié)點(diǎn)部署算法,較好地分散了節(jié)點(diǎn)功耗,延長了無線傳感器網(wǎng)絡(luò)的生命周期。仿真實(shí)驗(yàn)結(jié)果證明,該部署策略可以取得較高的覆蓋度,較好地完成目標(biāo)區(qū)域的部署工作。本文的主要研究內(nèi)容以及創(chuàng)新點(diǎn)如下:(1)針對二維移動(dòng)無線傳感器網(wǎng)絡(luò),提出了基于位置信息的理想流體模型節(jié)點(diǎn)部署算法,把無線傳感器網(wǎng)絡(luò)抽象為理想流體,那么,部署過程中節(jié)點(diǎn)的移動(dòng)則遵循流體微團(tuán)的物理規(guī)則。采用覆蓋度及覆蓋均勻度兩個(gè)性能指標(biāo),對該部署算法的性能進(jìn)行了相應(yīng)評(píng)價(jià),并對整個(gè)部署過程做了仿真實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,基于位置信息的理想流體模型節(jié)點(diǎn)部署算法,相比于經(jīng)典虛擬力部署算法,網(wǎng)絡(luò)部署性能取得了較好效果;(2)針對基于位置信息的理想流體模型在部署過程中網(wǎng)絡(luò)的連通性的欠缺問題,進(jìn)一步使用非守恒粘性流體模型對網(wǎng)絡(luò)部署進(jìn)行研究,并考慮了實(shí)際部署過程中環(huán)境的復(fù)雜性,特別是地形、地貌的影響(粘滯阻力),提出了基于非守恒粘性流體模型的三維空間節(jié)點(diǎn)部署算法,并進(jìn)行了仿真研究,相比于基于位置信息的理想流體模型節(jié)點(diǎn)部署算法,部署效果得到了進(jìn)一步提高;(3)針對三維水下無線傳感器網(wǎng)絡(luò),結(jié)合魚群算法,提出了基于改進(jìn)人工魚群的流體模型節(jié)點(diǎn)自部署算法。該算法適應(yīng)于水下傳感器網(wǎng)絡(luò)的應(yīng)用環(huán)境,在算法中水下傳感器節(jié)點(diǎn)被視為人工魚和粘性流體,事件則被視為人工魚的食物。網(wǎng)絡(luò)節(jié)點(diǎn)的部署過程,從而就可被視為流體自主移動(dòng)以完成自部署和人工魚尋覓食物的過程。針對動(dòng)態(tài)事件設(shè)計(jì)了具體算法,并進(jìn)行了仿真研究。該算法是一種分布式部署算法,既分散了節(jié)點(diǎn)功耗,又較好地延長了網(wǎng)絡(luò)生命周期;(4)在苛刻、未知的部署環(huán)境中,本文從高精度衛(wèi)星地圖上提取部署區(qū)域的地形地貌及高度信息,然后使用部署算法在衛(wèi)星地圖上進(jìn)行虛擬部署。利用衛(wèi)星地圖進(jìn)行節(jié)點(diǎn)虛擬部署,該方法能夠以接近真實(shí)環(huán)境來評(píng)估部署算法的性能。此外,在實(shí)際部署之前進(jìn)行節(jié)點(diǎn)虛擬預(yù)部署,可以根據(jù)虛擬部署結(jié)果預(yù)先規(guī)劃部署策略,預(yù)估部署代價(jià),為在真實(shí)環(huán)境中的部署工作提供數(shù)據(jù)參考,同時(shí)也降低了部署代價(jià)。本文理論研究與仿真結(jié)果較好吻合,從而證實(shí)了理論計(jì)算與分析的正確性和可靠性,也驗(yàn)證了文中提出的基于流體動(dòng)力學(xué)模型的節(jié)點(diǎn)部署方法的優(yōu)越性和正確性。為節(jié)點(diǎn)部署技術(shù)的研究及應(yīng)用,做了有益的探索。
[Abstract]:Node deployment technology is one of the hotspots in the research of wireless sensor networks. The optimized node deployment strategy can greatly enhance the fault tolerance and load balancing of nodes in the network. It can also improve the network performance, prolong the network life cycle and reduce the network deployment cost. The node deployment problem of the network is wireless. A difficult problem in the research of sensor networks is particularly prominent in the complex deployment environment. This paper applies the hydrodynamic model to the node deployment technology of wireless sensor networks. Firstly, the ideal fluid model based on position information is used to study the nodes, in order to make up the ideal fluid model connectivity. A non conserved viscous fluid model is used to study the node deployment of the three-dimensional network. Compared with the ideal fluid model, the deployment effect has been improved. However, both the ideal fluid model and the viscous fluid model are essentially a centralized deployment strategy, which is for network load balancing and extension. The long network lifetime is unfavorable. At the end of this paper, a distributed node deployment algorithm based on the improved artificial fish swarm is proposed, which can better disperse the node power and prolong the life cycle of the wireless sensor network. The simulation experiment results show that the deployment strategy can achieve high coverage and complete the target area better. The main research contents and innovation points of this paper are as follows: (1) aiming at two-dimensional mobile wireless sensor networks, an ideal fluid model node deployment algorithm based on position information is proposed to abstract the wireless sensor network into an ideal fluid. Then, the movement of nodes in the deployment process follows the physical rules of the fluid micromass. The performance of the deployment algorithm is evaluated with two performance indexes, including the coverage degree and the coverage uniformity, and the simulation experiment is made on the whole deployment process. The experimental results show that the deployment algorithm of the ideal fluid model node based on position information has achieved good results compared with the classical virtual force deployment algorithm; (2) the network deployment performance is better than that of the classical virtual force deployment algorithm. For the lack of connectivity of the ideal fluid model based on position information in the process of deployment, the non conserved viscous fluid model is used to further study the network deployment, and the complexity of the environment is considered in the actual deployment process, especially the topography, the viscous resistance, and the non conserved viscous fluid. The 3D space node deployment algorithm is studied and the simulation research is carried out. Compared with the location information based ideal fluid model node deployment algorithm, the deployment effect has been further improved. (3) aiming at the three-dimensional underwater wireless sensor network and the fish swarm algorithm, the self deployment calculation of the fluid model node based on the improved artificial fish swarm is proposed. The algorithm adapts to the application environment of underwater sensor networks. In the algorithm, underwater sensor nodes are regarded as artificial fish and viscous fluid, and events are considered as the food of artificial fish. The deployment process of network nodes can be considered as the process of self deployment and artificial fish seeking for food. This algorithm is a distributed deployment algorithm, which not only disperses the power consumption of the nodes, but also prolongs the life cycle of the network. (4) in the harsh, unknown deployment environment, this paper extracts the topography and height information of the deployment area from the high precision satellite map, and then uses the deployment algorithm. Virtual deployment on satellite maps. Using satellite maps for virtual deployment of nodes, this method can evaluate the performance of the deployment algorithm in close proximity to the real environment. In addition, the virtual deployment of nodes before the actual deployment can pre plan the department strategy according to the virtual deployment results and estimate the deployment cost for the real environment. The deployment work provides reference for data and reduces the cost of deployment. The theoretical research in this paper is in good agreement with the simulation results, which confirms the correctness and reliability of the theoretical calculation and analysis. It also validates the superiority and correctness of the node deployment method based on the hydrodynamic model in the paper. The study and application have made useful exploration.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP212.9;TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何明;梁文輝;陳國華;陳秋麗;;水下移動(dòng)無線傳感器網(wǎng)絡(luò)拓?fù)鋄J];控制與決策;2013年12期
2 申鉉京;劉陽陽;黃永平;徐鐵;何習(xí)文;;求解TSP問題的快速蟻群算法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2013年01期
3 王力立;徐志良;吳曉蓓;黃成;;感知能力異構(gòu)的無線傳感器網(wǎng)絡(luò)優(yōu)化部署機(jī)制[J];南京理工大學(xué)學(xué)報(bào);2012年03期
4 汪小龍;張紅艷;方潛生;葛運(yùn)建;汪增福;;無線傳感網(wǎng)絡(luò)覆蓋中概率Voronoi模型及算法研究[J];傳感技術(shù)學(xué)報(bào);2012年05期
5 李猛;丁代榮;郭廷立;;一種無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)隨機(jī)部署策略[J];計(jì)算機(jī)工程;2012年05期
6 陶丹;馬華東;;有向傳感器網(wǎng)絡(luò)覆蓋控制算法[J];軟件學(xué)報(bào);2011年10期
7 張可;張偉;戴春楊;曾家智;;Artificial fish-swarm based coverage-enhancing algorithm for visible light sensor networks[J];Optoelectronics Letters;2010年03期
8 楊挺;孫雨耕;張強(qiáng);李桂丹;張志東;;分布式三元量度無線傳感器網(wǎng)絡(luò)監(jiān)測網(wǎng)格劃分算法研究[J];傳感技術(shù)學(xué)報(bào);2010年01期
9 黃艷;梁韋華;于海斌;;一種高效覆蓋的水下傳感器網(wǎng)絡(luò)部署策略[J];電子與信息學(xué)報(bào);2009年05期
10 俞黎陽;王能;張衛(wèi);;異構(gòu)無線傳感器網(wǎng)絡(luò)中異構(gòu)節(jié)點(diǎn)的部署與優(yōu)化[J];計(jì)算機(jī)科學(xué);2008年09期
,本文編號(hào):2005345
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2005345.html