天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 信息類博士論文 >

天線互耦表征及去耦方法的研究

發(fā)布時(shí)間:2018-04-24 11:14

  本文選題:天線互耦 + 電流分布。 參考:《東南大學(xué)》2016年博士論文


【摘要】:一直以來(lái),天線互耦作為天線領(lǐng)域的重要研究?jī)?nèi)容,備受研究人員的關(guān)注。互耦對(duì)各種無(wú)線通信和探測(cè)系統(tǒng)性能的影響不容小覷。例如,互耦會(huì)惡化收發(fā)隔離度、降低系統(tǒng)容量、引入掃描盲點(diǎn)以及影響系統(tǒng)的設(shè)計(jì)精度。因此開(kāi)展天線互耦問(wèn)題的研究和探索解決措施具有重要意義和應(yīng)用價(jià)值。本文從天線互耦表征和去耦方法兩方面展開(kāi)研究,提出了一種基于天線電流分布表征互耦的電流失真參數(shù),并研究設(shè)計(jì)了基于多種方法的去耦結(jié)構(gòu)。主要工作和研究成果如下:(1)提出了一種表征天線互耦的參數(shù)一電流失真參數(shù)。該參數(shù)給出了有無(wú)互耦情況下天線電流分布的相對(duì)差異,從而表征了互耦對(duì)電流分布的影響。通常使用散射參數(shù)表征天線互耦,然而該參數(shù)只反映了天線端口的特性,而且端口特性不能完全描述互耦對(duì)天線的影響,這樣就有必要研究表征互耦的其他參數(shù)。由于天線的電流分布同時(shí)決定了其輻射和端口特性,因此電流失真參數(shù)可以評(píng)估互耦對(duì)天線特性的影響。利用偶極子天線間、微帶天線間、縫隙天線間的互耦以及偶極子天線與金屬棒間的耦合等多種計(jì)算實(shí)例,展示了電流失真參數(shù)的特點(diǎn)。它與散射參數(shù)一樣,均可描述天線間互耦的強(qiáng)弱和評(píng)價(jià)去耦結(jié)構(gòu)的性能,但側(cè)重點(diǎn)不同。散射參數(shù)側(cè)重于互耦對(duì)天線端口的作用,而電流失真參數(shù)側(cè)重于互耦對(duì)天線整體電流的影響。在某些情況下,從端口特性看天線互耦較弱,但實(shí)際上互耦對(duì)天線的影響很大,甚至?xí)䦟?dǎo)致方向圖有大的畸變。這樣這些情況下的電流失真參數(shù)可更為準(zhǔn)確地表征互耦的影響。同時(shí)電流失真參數(shù)還可以表征天線對(duì)非自由空間環(huán)境的敏感度。因此電流失真參數(shù)可作為散射參數(shù)的一種補(bǔ)充,用于天線互耦問(wèn)題的研究。(2)設(shè)計(jì)了多種基于場(chǎng)對(duì)消方法的去耦結(jié)構(gòu),重點(diǎn)解決小間距的微帶天線間的互耦間題。這些對(duì)消型去耦結(jié)構(gòu)能夠在天線間施加一種間接耦合場(chǎng),并使之與原有直接耦合場(chǎng)相對(duì)消,從而實(shí)現(xiàn)互耦的抑制。設(shè)計(jì)了一種結(jié)構(gòu)簡(jiǎn)單的微帶線去禍結(jié)構(gòu)。實(shí)驗(yàn)結(jié)果表明在天線邊到邊間距僅為0.023λ0時(shí),隔離度改善了16.7 dB~22.8 dB。設(shè)計(jì)了一種非對(duì)稱共面條帶去耦結(jié)構(gòu),該結(jié)構(gòu)不僅有效地抑制了緊密擺放微帶天線間的互耦,而且解決了去耦結(jié)構(gòu)影響天線輻射性能的間題。還設(shè)計(jì)了一種含開(kāi)路槽的金屬墻結(jié)構(gòu),此結(jié)構(gòu)在實(shí)現(xiàn)場(chǎng)對(duì)消的同時(shí),其所具有的金屬墻也可以抑制部分耦合,因此它具有一種混合去耦能力。最后,以微帶線去耦結(jié)構(gòu)為例展示了對(duì)消型結(jié)構(gòu)可用于多元陣列的去耦。(3)設(shè)計(jì)了兩種基于帶阻濾波方法的去耦結(jié)構(gòu)。這兩種帶阻濾波型去耦結(jié)構(gòu)均能夠在微帶天線間的耦合路徑上進(jìn)行濾波,可適用于多種間距的天線間的去耦。所設(shè)計(jì)的半波地槽結(jié)構(gòu)在微帶天線間構(gòu)建了帶阻地平面,以濾除地電流的耦合。該結(jié)構(gòu)的帶阻特性僅由地槽自身的諧振決定。仿真和測(cè)試均表明,該結(jié)構(gòu)能夠滿足多種天線間距下的去耦要求,并且適量地增加地槽數(shù)可以展寬去耦帶寬。設(shè)計(jì)了一種半波地槽的小型化結(jié)構(gòu)一加載過(guò)孔墻的階躍阻抗地槽,該結(jié)構(gòu)有效地縮短了半波地槽的物理長(zhǎng)度,同時(shí)較之傳統(tǒng)階躍阻抗結(jié)構(gòu),該種加載結(jié)構(gòu)占用較小的空間,并取得了更好的去耦效果。以上設(shè)計(jì)的半波地槽及其小型化結(jié)構(gòu)均可方便地用于多元陣列的去耦。(4)提出了一種模式變換去耦方法,并設(shè)計(jì)了此方法的實(shí)現(xiàn)結(jié)構(gòu)。不同于場(chǎng)對(duì)消和帶阻濾波方法,模式變換方法并不直接阻斷微帶天線間的耦合,而是將耦合到鄰近天線單元上的模式變換為該天線工作模式的正交模式,并且該天線無(wú)法有效地工作于此正交模式,從而增強(qiáng)了微帶天線間的隔離度。基于此方法,設(shè)計(jì)了一種微帶交指線去耦結(jié)構(gòu)。仿真分析驗(yàn)證了微帶交指線結(jié)構(gòu)的模式變換作用。測(cè)試表明在天線邊到邊間距僅為0.07λ0時(shí),隔離度改善了15.2 dB~24.7 dB。另外,該種結(jié)構(gòu)能夠方便地實(shí)現(xiàn)多元陣列的去耦。在本文工作中,所提出的電流失真參數(shù)提供了一種從電流分布角度表征天線互耦的方法,適用于各類互耦問(wèn)題的研究,其中包括了天線間的互耦以及天線與非自由空間環(huán)境間的耦合;所研究設(shè)計(jì)的幾種類型去耦結(jié)構(gòu)不僅可用于雙天線間的去耦,而且還為多天線陣列的隔離度問(wèn)題提供了解決方案。
[Abstract]:The mutual coupling of antennas has always been an important research content in the field of antenna, which has attracted much attention from researchers. Mutual coupling can not be underestimated for the performance of various wireless communication and detection systems. For example, mutual coupling will deteriorate the transmission isolation, reduce the system capacity, introduce the scanning blind point and influence the design accuracy of the system. The research and exploration of the solution are of great significance and application value. In this paper, two aspects of antenna mutual coupling characterization and decoupling method are studied, and a current distortion parameter based on antenna current distribution characterizing mutual coupling is proposed, and the decoupling structure based on various methods is designed. The main work and research results are as follows: (1) A parameter of current distortion is presented to characterize the mutual coupling of the antenna. This parameter gives the relative difference between the current distribution of the antenna without mutual coupling, thus characterizing the influence of the mutual coupling on the current distribution. It is necessary to study the influence of mutual coupling on the antenna, so it is necessary to study other parameters that characterize mutual coupling. Because the current distribution of the antenna determines its radiation and port characteristics, the current distortion parameters can evaluate the effect of mutual coupling on the antenna characteristics. A variety of calculation examples, such as the coupling between the sub antenna and the metal rod, show the characteristics of the current distortion parameters, which can describe the strength of the mutual coupling between the antennas and evaluate the performance of the decoupling structure as the scattering parameters, but the focus is different. The scattering parameters focus on the interaction of the mutual coupling on the antenna ports, and the current distortion parameters focus on mutual coupling to the sky. In some cases, in some cases, the mutual coupling of the antenna is weak, but in fact, the mutual coupling has a great influence on the antenna, and even leads to the large distortion of the direction map. In this case, the current distortion parameters can more accurately characterize the influence of mutual coupling. The sensitivity of the free space environment. Therefore, the current distortion parameters can be used as a supplement to the scattering parameters. (2) a variety of decoupling structures based on field cancellation are designed, focusing on the mutual coupling between microstrip antennas with small spacing. These pairs of decoupling structures can apply a kind of indirect indirection between the antennas. The coupling field is eliminated with the original direct coupling field, and the mutual coupling is suppressed. A simple structure of microstrip mischief is designed. The experimental results show that the isolation degree is improved by 16.7 dB to 22.8 dB. when the edge distance of the antenna is only 0.023 lambda 0, and the structure is not only effective. To suppress the mutual coupling between microstrip antennas and to solve the interlock between the decoupling structure and the radiation performance of the antenna, a metal wall structure with open channels is designed. The structure is eliminated and the metal wall of the structure can suppress the partial coupling. The decoupling structure of the microstrip line shows the decoupling of the canceling structure for multiple arrays. (3) two decoupling structures based on the band resistance filter method are designed. These two band resistance filter decoupling structures can be filtered on the coupling path between microstrip antennas, which can be applied to the decoupling of multiple spaced antennas. The designed half wave is designed. The geosyncline structure is built between the microstrip antennas and the ground plane is constructed to decouple the ground current. The band resistance characteristic of the structure is only determined by the resonance of the geosyncline itself. The simulation and test show that the structure can meet the decoupling requirements under a variety of antenna spacing, and a proper number of geosyncline numbers can be used to widen the decoupling bandwidth. The miniaturized structure of the wave geosyncline loaded the step impedance geosyncline of a perforated wall, which effectively shortened the physical length of the half wave geosyncline and compared with the traditional step impedance structure. This kind of loading structure takes up a small space and achieves better decoupling effect. The above designed semi wave geosyncline and its miniaturized structure can be easily used. (4) a mode transformation decoupling method is proposed, and the realization structure of this method is designed. The method is different from field cancellation and band stop filtering. The mode transformation method does not directly block the coupling between microstrip antennas, but the mode of coupling to the adjacent antenna unit is transformed into the orthogonal mode of the antenna mode. And the antenna can not work effectively in this orthogonal mode, thus enhancing the isolation between microstrip antennas. Based on this method, a microstrip interdigital decoupling structure is designed. The simulation analysis proves the mode transformation of the microstrip interdigital structure. The test shows that the isolation degree is improved by 15.2 d when the edge to side distance of the antenna is only 0.07 lambda 0. In this paper, the current distortion parameters provide a method to characterize the mutual coupling of antennas from the angle of current distribution, which is suitable for the study of various mutual coupling problems, including the mutual coupling between antennas and between the antenna and the non free space environment, in this paper, the current distortion parameters presented in this paper provide a method to characterize the mutual coupling of antennas from the angle of current distribution. Coupling, several types of decoupling structures designed to be designed can be used not only for decoupling between two antennas, but also for the isolation of multiple antenna arrays.

【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN820

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張旭東;劉章孟;黃知濤;熊華鋼;;陣列互耦條件下運(yùn)動(dòng)目標(biāo)角度跟蹤方法研究[J];國(guó)防科技大學(xué)學(xué)報(bào);2010年05期

2 G.Mazzarella;G.Panariello;李俊沛;;關(guān)于裂縫間互耦的計(jì)算[J];現(xiàn)代雷達(dá);1989年06期

3 伍裕江;聶在平;;應(yīng)用互耦補(bǔ)償?shù)亩嗵炀無(wú)線系統(tǒng)容量分析[J];電子科技大學(xué)學(xué)報(bào);2008年02期

4 張宇;逯科;廖玉忠;;一種基于陣列虛擬平移的互耦自校正算法[J];微計(jì)算機(jī)信息;2009年24期

5 魯祖坤;高鷹;肖劍;石宇;林輝燦;;基于L型陣列的互耦誤差校正算法研究[J];航天電子對(duì)抗;2012年06期

6 劉勇;徐振海;肖順平;;陣列互耦對(duì)極化敏感陣列濾波性能的影響[J];電子學(xué)報(bào);2006年12期

7 甘軼;王晟達(dá);張智軍;王峰;;雷達(dá)互耦跟蹤系統(tǒng)性能分析與參數(shù)優(yōu)選[J];微計(jì)算機(jī)信息;2008年25期

8 童寧寧;郭藝奪;宮健;;多徑條件下陣列互耦自校正算法研究[J];航天電子對(duì)抗;2008年05期

9 李岳衡;彭文杰;燕璐;居美艷;黃平;;雙散射環(huán)境下互耦對(duì)多入多出系統(tǒng)容量的影響[J];電波科學(xué)學(xué)報(bào);2013年04期

10 程春悅;呂英華;;均勻圓形陣列互耦系數(shù)的測(cè)量與校正[J];電子測(cè)量與儀器學(xué)報(bào);2005年06期

相關(guān)會(huì)議論文 前7條

1 李文浩;趙擁軍;;一種陣列幅相及互耦誤差約束校正算法[A];2007北京地區(qū)高校研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)會(huì)議論文集(上冊(cè))[C];2008年

2 黃克猛;張?jiān)?何海丹;;圓柱共形面上波導(dǎo)口輻射元間的互耦研究[A];2009年全國(guó)天線年會(huì)論文集(下)[C];2009年

3 蔡木仁;劉波;;基于投影法互耦補(bǔ)償?shù)木陣方向圖綜合[A];2009年全國(guó)微波毫米波會(huì)議論文集(上冊(cè))[C];2009年

4 陳四根;楊莘元;崔金輝;;陣元互耦對(duì)SC-SSF DOA估計(jì)的影響[A];現(xiàn)代通信理論與信號(hào)處理進(jìn)展——2003年通信理論與信號(hào)處理年會(huì)論文集[C];2003年

5 姚旭;曹祥玉;吳君輝;李文強(qiáng);;一種考慮互耦的線天線陣列散射預(yù)估[A];2011年全國(guó)微波毫米波會(huì)議論文集(上冊(cè))[C];2011年

6 胡明波;;談?wù)凞VOR的互耦問(wèn)題[A];探索創(chuàng)新交流--中國(guó)航空學(xué)會(huì)青年科技論壇文集[C];2004年

7 邱莉霞;楊峰;聶在平;;陣列天線互耦對(duì)DOA估計(jì)的影響[A];2001年全國(guó)微波毫米波會(huì)議論文集[C];2001年

相關(guān)博士學(xué)位論文 前2條

1 鮑健慧;自適應(yīng)陣列天線互耦校準(zhǔn)方法的研究[D];西安電子科技大學(xué);2016年

2 齊宏業(yè);天線互耦表征及去耦方法的研究[D];東南大學(xué);2016年

相關(guān)碩士學(xué)位論文 前10條

1 史厚寶;降雨環(huán)境下毫米波MIMO系統(tǒng)互耦特性研究[D];西安電子科技大學(xué);2013年

2 高葉霞;一種六邊形陣互耦誤差校正方法研究[D];重慶大學(xué);2015年

3 吳敏;基于矩量法的陣列天線互耦特性研究[D];電子科技大學(xué);2016年

4 李實(shí)秋;基于互耦條件下的陣列信號(hào)校正方法研究[D];西安科技大學(xué);2012年

5 楊洋;多徑條件下波達(dá)方向估計(jì)與互耦自校正算法研究[D];重慶郵電大學(xué);2014年

6 夏靖;天線陣列處理中的互耦效應(yīng)及補(bǔ)償技術(shù)的研究[D];天津大學(xué);2009年

7 方焱枝;互耦誤差條件下的高分辨陣列信號(hào)參數(shù)估計(jì)[D];南京郵電大學(xué);2013年

8 譚壀林;互耦誤差條件下的陣列信號(hào)參數(shù)估計(jì)研究[D];西南交通大學(xué);2010年

9 袁利華;存在互耦情況下的自適應(yīng)波束形成研究[D];西安電子科技大學(xué);2014年

10 高雪;自適應(yīng)天線陣的互耦效應(yīng)研究[D];西安電子科技大學(xué);2001年



本文編號(hào):1796397

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1796397.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b6761***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com